No Arabic abstract
Current discussions on the sixth Generation (6G) of wireless communications are envisioning future networks as a unified communication, sensing, and computing platform that intelligently enables diverse services, ranging from immersive to mission critical applications. The recently conceived concept of the smart radio environment, enabled by Reconfigurable Intelligent Surfaces (RISs), contributes towards this intelligent networking trend, offering programmable propagation of information-bearing signals, which can be jointly optimized with transceiver operations. Typical RIS implementations include metasurfaces with nearly passive meta-atoms, allowing to solely reflect the incident wave in an externally controllable way. However, this purely reflective nature induces significant challenges in the RIS orchestration from the wireless network. For example, channel estimation, which is essential for coherent communications in RIS-empowered wireless networks, is quite challenging with the available RIS designs. This article introduces the concept of Hybrid reflecting and sensing RISs (HRISs), which enables metasurfaces to reflect the impinging signal in a controllable manner, while simultaneously sense a portion of it. The sensing capability of HRISs facilitates various network management functionalities, including channel estimation and localization. We discuss a hardware design for HRISs and detail a full-wave proof-of-concept. We highlight their distinctive properties in comparison to reflective RISs and active relays, and present a simulation study evaluating the HRIS capability for performing channel estimation. Future research challenges and opportunities arising from the concept of HRISs are presented.
In wireless systems aided by reconfigurable intelligent surfaces (RISs), channel state information plays a pivotal role in achieving the performance gain of RISs. Mobility renders accurate channel estimation (CE) more challenging due to the Doppler effect. In this letter, we propose two practical wideband CE schemes incorporating Doppler shift adjustment (DSA) for multi-path and single-path propagation environments, respectively, for RIS-assisted communication with passive reflecting elements. For the multi-path scenario, ordinary CE is first executed assuming quasi-static channels, followed by DSA realized via joint RIS reflection pattern selection and transformations between frequency and time domains. The proposed CE necessitates only one more symbol incurring negligible extra overhead compared with the number of symbols required for the original CE. For the single-path case which is especially applicable to millimeter-wave and terahertz systems, a novel low-complexity CE method is devised capitalizing on the form of the array factors at the RIS. Simulation results demonstrate that the proposed algorithms yield high CE accuracy and achievable rate with low complexity, and outperform representative benchmark schemes.
The intrinsic integration of the nonorthogonal multiple access (NOMA) and reconfigurable intelligent surface (RIS) techniques is envisioned to be a promising approach to significantly improve both the spectrum efficiency and energy efficiency for future wireless communication networks. In this paper, the physical layer security (PLS) for a RIS-aided NOMA 6G networks is investigated, in which a RIS is deployed to assist the two dead zone NOMA users and both internal and external eavesdropping are considered. For the scenario with only internal eavesdropping, we consider the worst case that the near-end user is untrusted and may try to intercept the information of far-end user. A joint beamforming and power allocation sub-optimal scheme is proposed to improve the system PLS. Then we extend our work to a scenario with both internal and external eavesdropping. Two sub-scenarios are considered in this scenario: one is the sub-scenario without channel state information (CSI) of eavesdroppers, and another is the sub-scenario where the eavesdroppers CSI are available. For the both sub-scenarios, a noise beamforming scheme is introduced to be against the external eavesdroppers. An optimal power allocation scheme is proposed to further improve the system physical security for the second sub-scenario. Simulation results show the superior performance of the proposed schemes. Moreover, it has also been shown that increasing the number of reflecting elements can bring more gain in secrecy performance than that of the transmit antennas.
In this work, we investigate a novel simultaneous transmission and reflection reconfigurable intelligent surface (RIS)-assisted multiple-input multiple-output downlink system, where three practical transmission protocols, namely, energy splitting (ES), mode selection (MS), and time splitting (TS), are studied. For the system under consideration, we maximize the weighted sum rate with multiple coupled variables. To solve this optimization problem, a block coordinate descent algorithm is proposed to reformulate this problem and design the precoding matrices and the transmitting and reflecting coefficients (TARCs) in an alternate manner. Specifically, for the ES scheme, the precoding matrices are solved using the Lagrange dual method, while the TARCs are obtained using the penalty concave-convex method. Additionally, the proposed method is extended to the MS scheme by solving a mixed-integer problem. Moreover, we solve the formulated problem for the TS scheme using a one-dimensional search and the Majorization-Minimization technique. Our simulation results reveal that: 1) Simultaneous transmission and reflection RIS (STAR-RIS) can achieve better performance than reflecting-only RIS; 2) In unicast communication, TS scheme outperforms the ES and MS schemes, while in broadcast communication, ES scheme outperforms the TS and MS schemes.
The future 6G of wireless communication networks will have to meet multiple requirements in increasingly demanding levels, either individually or in combinations in small groups. This trend has spurred recent research activities on transceiver hardware architectures and novel wireless connectivity concepts. Among the emerging wireless hardware architectures belong the Reconfigurable Intelligent Surfaces (RISs), which are artificial planar structures with integrated electronic circuits that can be programmed to manipulate an incoming ElectroMagnetic (EM) field in a wide variety of functionalities. Incorporating RISs in wireless networks has been recently advocated as a revolutionary means to transform any naturally passive wireless communication environment to an active one. This can be accomplished by deploying cost-effective and easy to coat RISs to the environments objects (e.g., building facades and indoor walls/ceilings), thus, offering increased environmental intelligence for the scope of diverse wireless networking objectives. In this paper, we first provide a brief history on wave propagation control for optics and acoustics, and overview two representative indoor wireless trials at 2.47GHz for spatial EM modulation with a passive discrete RIS. The first trial dating back to 2014 showcases the feasibility of highly accurate spatiotemporal focusing and nulling, while the second very recent one demonstrates that passive RISs can enrich multipath scattering, thus, enabling throughput boosted communication links. Motivated by the late research excitement on the RIS potential for intelligent EM wave propagation modulation, we describe the status on RIS hardware architectures and present key open challenges and future research directions for RIS design and RIS-empowered 6G wireless communications.
Reconfigurable Intelligent Surface (RIS) is a promising solution to reconfigure the wireless environment in a controllable way. To compensate for the double-fading attenuation in the RIS-aided link, a large number of passive reflecting elements (REs) are conventionally deployed at the RIS, resulting in large surface size and considerable circuit power consumption. In this paper, we propose a new type of RIS, called active RIS, where each RE is assisted by active loads (negative resistance), that reflect and amplify the incident signal instead of only reflecting it with the adjustable phase shift as in the case of a passive RIS. Therefore, for a given power budget at the RIS, a strengthened RIS-aided link can be achieved by increasing the number of active REs as well as amplifying the incident signal. We consider the use of an active RIS to a single input multiple output (SIMO) system. {However, it would unintentionally amplify the RIS-correlated noise, and thus the proposed system has to balance the conflict between the received signal power maximization and the RIS-correlated noise minimization at the receiver. To achieve this goal, it has to optimize the reflecting coefficient matrix at the RIS and the receive beamforming at the receiver.} An alternating optimization algorithm is proposed to solve the problem. Specifically, the receive beamforming is obtained with a closed-form solution based on linear minimum-mean-square-error (MMSE) criterion, while the reflecting coefficient matrix is obtained by solving a series of sequential convex approximation (SCA) problems. Simulation results show that the proposed active RIS-aided system could achieve better performance over the conventional passive RIS-aided system with the same power budget.