Do you want to publish a course? Click here

Robust Beamforming Design and Time Allocation for IRS-assisted Wireless Powered Communication Networks

111   0   0.0 ( 0 )
 Added by Zhendong Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) architecture is proposed for low-power Internet-of-Things (IoT) devices, where the IRS is exploited to improve the performance of WPCN under imperfect channel state information (CSI). We formulate a hybrid access point (HAP) transmission energy minimization problem by a joint design of time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient under the imperfect CSI and non-linear energy harvesting model. Due to the high coupling of optimization variables, this problem is a non-convex optimization problem, which is difficult to solve directly. In order to solve the above-mentioned challenging problems, the alternating optimization (AO) is applied to decouple the optimization variables to solve the problem. Specifically, through AO, time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient are divided into three sub-problems to be solved alternately. The difference-of-convex (DC) programming is applied to solve the non-convex rank-one constraint in solving the IRS energy reflection coefficient and information reflection coefficient. Numerical simulations verify the effectiveness of our proposed algorithm in reducing HAP transmission energy compared to other benchmarks.



rate research

Read More

The high reflect beamforming gain of the intelligent reflecting surface (IRS) makes it appealing not only for wireless information transmission but also for wireless power transfer. In this letter, we consider an IRS-assisted wireless powered communication network, where a base station (BS) transmits energy to multiple users grouped into multiple clusters in the downlink, and the clustered users transmit information to the BS in the manner of hybrid non-orthogonal multiple access and time division multiple access in the uplink. We investigate optimizing the reflect beamforming of the IRS and the time allocation among the BSs power transfer and different user clusters information transmission to maximize the throughput of the network, and we propose an efficient algorithm based on the block coordinate ascent, semidefinite relaxation, and sequential rank-one constraint relaxation techniques to solve the resultant problem. Simulation results have verified the effectiveness of the proposed algorithm and have shown the impact of user clustering setup on the throughput performance of the network.
Intelligent reflecting surface (IRS) is a promising technology to support high performance wireless communication. By adaptively configuring the reflection amplitude and/or phase of each passive reflecting element on it, the IRS can reshape the electromagnetic environment in favour of signal transmission. This letter advances the existing research by proposing and analyzing a double-IRS aided wireless communication system. Under the reasonable assumption that the reflection channel from IRS 1 to IRS 2 is of rank 1 (e.g., line-of-sight channel), we propose a joint passive beamforming design for the two IRSs. Based on this, we show that deploying two cooperative IRSs with in total K elements can yield a power gain of order O(K^4), which greatly outperforms the case of deploying one traditional IRS with a power gain of order O(K^2). Our simulation results validate that the performance of deploying two cooperative IRSs is significantly better than that of deploying one IRS given a sufficient total number of IRS elements. We also extend our line-of-sight channel model to show how different channel models affect the performance of the double-IRS aided wireless communication system.
82 - Hong Shen , Tian Ding , Wei Xu 2020
We study the beamforming optimization for an intelligent reflecting surface (IRS)-aided full-duplex (FD) communication system in this letter. Specifically, we maximize the sum rate of bi-directional transmissions by jointly optimizing the transmit beamforming and the beamforming of the IRS reflection. A fast converging alternating algorithm is developed to tackle this problem. In each iteration of the proposed algorithm, the solutions to the transmit beamforming and the IRS reflect beamforming are obtained in a semi-closed form and a closed form, respectively. Compared to an existing method based on the Arimoto-Blahut algorithm, the proposed method achieves almost the same performance while enjoying much faster convergence and lower computational complexity.
109 - Yao Tang , Man Hon Cheung , 2019
Unmanned aerial vehicles (UAVs) can enhance the performance of cellular networks, due to their high mobility and efficient deployment. In this paper, we present a first study on how the user mobility affects the UAVs trajectories of a multiple-UAV assisted wireless communication system. Specifically, we consider the UAVs are deployed as aerial base stations to serve ground users who move between different regions. We maximize the throughput of ground users in the downlink communication by optimizing the UAVs trajectories, while taking into account the impact of the user mobility, propulsion energy consumption, and UAVs mutual interference. We formulate the problem as a route selection problem in an acyclic directed graph. Each vertex represents a task associated with a reward on the average user throughput in a region-time point, while each edge is associated with a cost on the energy propulsion consumption during flying and hovering. For the centralized trajectory design, we first propose the shortest path scheme that determines the optimal trajectory for the single UAV case. We also propose the centralized route selection (CRS) scheme to systematically compute the optimal trajectories for the more general multiple-UAV case. Due to the NP-hardness of the centralized problem, we consider the distributed trajectory design that each UAV selects its trajectory autonomously and propose the distributed route selection (DRS) scheme, which will converge to a pure strategy Nash equilibrium within a finite number of iterations.
Energy-efficient design and secure communications are of crucial importance in wireless communication networks. However, the energy efficiency achieved by using physical layer security can be limited by the channel conditions. In order to tackle this problem, an intelligent reflecting surface (IRS) assisted multiple input single output (MISO) network with independent cooperative jamming is studied. The energy efficiency is maximized by jointly designing the transmit and jamming beamforming and IRS phase-shift matrix under both the perfect channel state information (CSI) and the imperfect CSI. In order to tackle the challenging non-convex fractional problems, an algorithm based on semidefinite programming (SDP) relaxation is proposed for solving energy efficiency maximization problem under the perfect CSI case while an alternate optimization algorithm based on $mathcal{S}$-procedure is used for solving the problem under the imperfect CSI case. Simulation results demonstrate that the proposed design outperforms the benchmark schemes in term of energy efficiency. Moreover, the tradeoff between energy efficiency and the secrecy rate is found in the IRS-assisted MISO network. Furthermore, it is shown that IRS can help improve energy efficiency even with the uncertainty of the CSI.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا