Do you want to publish a course? Click here

Generating time-domain linear cluster state by recycling superconducting qubits

182   0   0.0 ( 0 )
 Added by Shotaro Shirai
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cluster states, a type of highly entangled state, are essential resources for quantum information processing. Here we demonstrated the generation of a time-domain linear cluster state (t-LCS) using a superconducting quantum circuit consisting of only two transmon qubits. By recycling the physical qubits, the t-LCS equivalent up to four physical qubits was validated by quantum state tomography with fidelity of 59%. We further confirmed the true generation of t-LCS by examining the expectation value of an entanglement witness. Our demonstrated protocol of t-LCS generation allows efficient use of physical qubits which could lead to resource-efficient execution of quantum circuits on large scale.

rate research

Read More

We present a scheme for the dissipative preparation of an entangled steady state of two superconducting qubits in a circuit QED setup. Combining resonator photon loss, a dissipative process already present in the setup, with an effective two-photon microwave drive, we engineer an effective decay mechanism which prepares a maximally entangled state of the two qubits. This state is then maintained as the steady state of the driven, dissipative evolution. The performance of the dissipative state preparation protocol is studied analytically and verified numerically. In view of the experimental implementation of the presented scheme we investigate the effects of potential experimental imperfections and show that our scheme is robust to small deviations in the parameters. We find that high fidelities with the target state can be achieved both with state-of-the-art 3D, as well as with the more commonly used 2D transmons. The promising results of our study thus open a route for the demonstration of an entangled steady state in circuit QED.
In recent quantum optical continuous-variable experiments, the number of fully inseparable light modes has drastically increased by introducing a multiplexing scheme either in the time domain or in the frequency domain. Here, modifying the time-domain multiplexing experiment reported in Nature Photonics 7, 982 (2013), we demonstrate successive generation of fully inseparable light modes for more than one million modes. The resulting multi-mode state is useful as a dual-rail CV cluster state. We circumvent the previous problem of optical phase drifts, which has limited the number of fully inseparable light modes to around ten thousands, by continuous feedback control of the optical system.
Superconducting qubits are leading candidates in the race to build a quantum computer capable of realizing computations beyond the reach of modern supercomputers. The superconducting qubit modality has been used to demonstrate prototype algorithms in the noisy intermediate scale quantum (NISQ) technology era, in which non-error-corrected qubits are used to implement quantum simulations and quantum algorithms. With the recent demonstrations of multiple high fidelity two-qubit gates as well as operations on logical qubits in extensible superconducting qubit systems, this modality also holds promise for the longer-term goal of building larger-scale error-corrected quantum computers. In this brief review, we discuss several of the recent experimental advances in qubit hardware, gate implementations, readout capabilities, early NISQ algorithm implementations, and quantum error correction using superconducting qubits. While continued work on many aspects of this technology is certainly necessary, the pace of both conceptual and technical progress in the last years has been impressive, and here we hope to convey the excitement stemming from this progress.
Quantum computers are capable of efficiently contracting unitary tensor networks, a task that is likely to remain difficult for classical computers. For instance, networks based on matrix product states or the multi-scale entanglement renormalization ansatz (MERA) can be contracted on a small quantum computer to aid the simulation of a large quantum system. However, without the ability to selectively reset qubits, the associated spatial cost can be exorbitant. In this paper, we propose a protocol that can unitarily reset qubits when the circuit has a common convolutional form, thus dramatically reducing the spatial cost for implementing the contraction algorithm on general near-term quantum computers. This protocol generates fresh qubits from used ones by partially applying the time-reversed quantum circuit over qubits that are no longer in use. In the absence of noise, we prove that the state of a subset of these qubits becomes $|0ldots 0rangle$, up to an error exponentially small in the number of gates applied. We also provide a numerical evidence that the protocol works in the presence of noise. We also provide a numerical evidence that the protocol works in the presence of noise, and formulate a condition under which the noise-resilience follows rigorously.
Progress in superconducting qubit experiments with greater numbers of qubits or advanced techniques such as feedback requires faster and more accurate state measurement. We have designed a multiplexed measurement system with a bandpass filter that allows fast measurement without increasing environmental damping of the qubits. We use this to demonstrate simultaneous measurement of four qubits on a single superconducting integrated circuit, the fastest of which can be measured to 99.8% accuracy in 140ns. This accuracy and speed is suitable for advanced multi-qubit experiments including surface code error correction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا