Do you want to publish a course? Click here

Superconducting Qubits: Current State of Play

109   0   0.0 ( 0 )
 Added by Morten Kjaergaard
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superconducting qubits are leading candidates in the race to build a quantum computer capable of realizing computations beyond the reach of modern supercomputers. The superconducting qubit modality has been used to demonstrate prototype algorithms in the noisy intermediate scale quantum (NISQ) technology era, in which non-error-corrected qubits are used to implement quantum simulations and quantum algorithms. With the recent demonstrations of multiple high fidelity two-qubit gates as well as operations on logical qubits in extensible superconducting qubit systems, this modality also holds promise for the longer-term goal of building larger-scale error-corrected quantum computers. In this brief review, we discuss several of the recent experimental advances in qubit hardware, gate implementations, readout capabilities, early NISQ algorithm implementations, and quantum error correction using superconducting qubits. While continued work on many aspects of this technology is certainly necessary, the pace of both conceptual and technical progress in the last years has been impressive, and here we hope to convey the excitement stemming from this progress.



rate research

Read More

The aim of this review is to provide quantum engineers with an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits. Over the past twenty years, the field has matured from a predominantly basic research endeavor to one that increasingly explores the engineering of larger-scale superconducting quantum systems. Here, we review several foundational elements -- qubit design, noise properties, qubit control, and readout techniques -- developed during this period, bridging fundamental concepts in circuit quantum electrodynamics (cQED) and contemporary, state-of-the-art applications in gate-model quantum computation.
We show how the dynamical modulation of the qubit-field coupling strength in a circuit quantum electrodynamics architecture mimics the motion of the qubit at relativistic speeds. This allows us to propose a realistic experiment to detect microwave photons coming from simulated acceleration radiation. Moreover, by combining this technique with the dynamical Casimir physics, we enhance the toolbox for studying relativistic phenomena in quantum field theory with superconducting circuits.
We report the first evidence of the formation of niobium hydrides within niobium films on silicon substrates in superconducting qubits fabricated at Rigetti Computing. We combine complementary techniques including room and cryogenic temperature atomic scale high-resolution and scanning transmission electron microscopy (HR-TEM and STEM), atomic force microscopy (AFM), and the time-of-flight secondary ion mass spectroscopy (TOF-SIMS) to reveal the existence of the niobium hydride precipitates directly in the Rigetti chip areas. Electron diffraction and high-resolution transmission electron microscopy (HR-TEM) analyses are performed at room and cryogenic temperatures (~106 K) on superconducting qubit niobium film areas, and reveal the formation of three types of Nb hydride domains with different crystalline orientations and atomic structures. There is also variation in their size and morphology from small (~5 nm) irregular shape domains within the Nb grains to large (~10-100 nm) Nb grains fully converted to niobium hydride. As niobium hydrides are non-superconducting and can easily change in size and location upon different cooldowns to cryogenic temperatures, our findings highlight a new previously unknown source of decoherence in superconducting qubits, contributing to both quasiparticle and two-level system (TLS) losses, and offering a potential explanation for qubit performance changes upon cooldowns. A pathway to mitigate the formation of the Nb hydrides for superconducting qubit applications is also discussed.
We have used Ramsey tomography to characterize charge noise in a weakly charge-sensitive superconducting qubit. We find a charge noise that scales with frequency as $1/f^alpha$ over 5 decades with $alpha = 1.93$ and a magnitude $S_q(text{1Hz})= 2.9times10^{-4}~e^2/text{Hz}$. The noise exponent and magnitude of the low-frequency noise are much larger than those seen in prior work on single electron transistors, yet are consistent with reports of frequency noise in other superconducting qubits. Moreover, we observe frequent large-amplitude jumps in offset charge exceeding 0.1$e$; these large discrete charge jumps are incompatible with a picture of localized dipole-like two-level fluctuators. The data reveal an unexpected dependence of charge noise on device scale and suggest models involving either charge drift or fluctuating patch potentials.
The realization of a coherent interface between distant charge or spin qubits in semiconductor quantum dots is an open challenge for quantum information processing. Here we demonstrate both resonant and non-resonant photon-mediated coherent interactions between double quantum dot charge qubits separated by several tens of micrometers. We present clear spectroscopic evidence of the collective enhancement of the resonant coupling of two qubits. With both qubits detuned from the resonator we observe exchange coupling between the qubits mediated by virtual photons. In both instances pronounced bright and dark states governed by the symmetry of the qubit-field interaction are found. Our observations are in excellent quantitative agreement with master-equation simulations. The extracted two-qubit coupling strengths significantly exceed the linewidths of the combined resonator-qubit system. This indicates that this approach is viable for creating photon-mediated two-qubit gates in quantum dot based systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا