Do you want to publish a course? Click here

Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing

64   0   0.0 ( 0 )
 Added by Jun-ichi Yoshikawa
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent quantum optical continuous-variable experiments, the number of fully inseparable light modes has drastically increased by introducing a multiplexing scheme either in the time domain or in the frequency domain. Here, modifying the time-domain multiplexing experiment reported in Nature Photonics 7, 982 (2013), we demonstrate successive generation of fully inseparable light modes for more than one million modes. The resulting multi-mode state is useful as a dual-rail CV cluster state. We circumvent the previous problem of optical phase drifts, which has limited the number of fully inseparable light modes to around ten thousands, by continuous feedback control of the optical system.

rate research

Read More

Quantum repeaters are indispensable for high-rate, long-distance quantum communications. The vision of a future quantum internet strongly hinges on realizing quantum repeaters in practice. Numerous repeaters have been proposed for discrete-variable (DV) single-photon-based quantum communications. Continuous variable (CV) encodings over the quadrature degrees of freedom of the electromagnetic field mode offer an attractive alternative. For example, CV transmission systems are easier to integrate with existing optical telecom systems compared to their DV counterparts. Yet, repeaters for CV have remained elusive. We present a novel quantum repeater scheme for CV entanglement distribution over a lossy bosonic channel that beats the direct transmission exponential rate-loss tradeoff. The scheme involves repeater nodes consisting of a) two-mode squeezed vacuum (TMSV) CV entanglement sources, b) the quantum scissors operation to perform nondeterministic noiseless linear amplification of lossy TMSV states, c) a layer of switched, mode multiplexing inspired by second-generation DV repeaters, which is the key ingredient apart from probabilistic entanglement purification that makes DV repeaters work, and d) a non-Gaussian entanglement swap operation. We report our exact results on the rate-loss envelope achieved by the scheme.
I present an extensible experimental design for optical continuous-variable cluster states of arbitrary size using four offline (vacuum) squeezers and six beamsplitters. This method has all the advantages of a temporal-mode encoding [Phys. Rev. Lett. 104, 250503], including finite requirements for coherence and stability even as the computation length increases indefinitely, with none of the difficulty of inline squeezing. The extensibility stems from a construction based on Gaussian projected entangled pair states (GPEPS). The potential for use of this design within a fully fault tolerant model is discussed.
Cluster states are an essential component in one-way quantum computation protocols. We present two schemes to generate addressable continuous-variable cluster states from quadrature squeezed cylindrically polarized modes. By including polarization in addition to the transverse spatial degree of freedom, elementary cluster states can be created in which four cluster nodes co-propagate within one paraxial vector beam. This approach is fundamentally compatible with existing time-multiplexed schemes that have been used to create the largest cluster states to date. We implement a proof-of-principle experiment of one of the proposed schemes and verify its feasibility by measuring the quantum correlations between the different nodes of the cluster state.
Cluster states, a type of highly entangled state, are essential resources for quantum information processing. Here we demonstrated the generation of a time-domain linear cluster state (t-LCS) using a superconducting quantum circuit consisting of only two transmon qubits. By recycling the physical qubits, the t-LCS equivalent up to four physical qubits was validated by quantum state tomography with fidelity of 59%. We further confirmed the true generation of t-LCS by examining the expectation value of an entanglement witness. Our demonstrated protocol of t-LCS generation allows efficient use of physical qubits which could lead to resource-efficient execution of quantum circuits on large scale.
We study asymptotic state transformations in continuous variable quantum resource theories. In particular, we prove that monotones displaying lower semicontinuity and strong superadditivity can be used to bound asymptotic transformation rates in these settings. This removes the need for asymptotic continuity, which cannot be defined in the traditional sense for infinite-dimensional systems. We consider three applications, to the resource theories of (I) optical nonclassicality, (II) entanglement, and (III) quantum thermodynamics. In cases (II) and (III), the employed monotones are the (infinite-dimensional) squashed entanglement and the free energy, respectively. For case (I), we consider the measured relative entropy of nonclassicality and prove it to be lower semicontinuous and strongly superadditive. Our technique then yields computable upper bounds on asymptotic transformation rates including those achievable under linear optical elements. We also prove a number of results which ensure the measured relative entropy of nonclassicality to be bounded on any physically meaningful state, and to be easily computable for some class of states of interest, e.g., Fock diagonal states. We conclude by applying our findings to the problem of cat state manipulation and noisy Fock state purification.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا