Do you want to publish a course? Click here

Fast Scalable State Measurement with Superconducting Qubits

184   0   0.0 ( 0 )
 Added by Daniel Sank
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Progress in superconducting qubit experiments with greater numbers of qubits or advanced techniques such as feedback requires faster and more accurate state measurement. We have designed a multiplexed measurement system with a bandpass filter that allows fast measurement without increasing environmental damping of the qubits. We use this to demonstrate simultaneous measurement of four qubits on a single superconducting integrated circuit, the fastest of which can be measured to 99.8% accuracy in 140ns. This accuracy and speed is suitable for advanced multi-qubit experiments including surface code error correction.



rate research

Read More

We experimentally demonstrate a high-efficiency Bell state measurement for time-bin qubits that employs two superconducting nanowire single-photon detectors with short dead-times, allowing projections onto two Bell states, |Psi>- and |Psi+>. Compared to previous implementations for time-bin qubits, this yields an increase in the efficiency of Bell state analysis by a factor of thirty.
As superconducting qubit circuits become more complex, addressing a large array of qubits becomes a challenging engineering problem. Dense arrays of qubits benefit from, and may require, access via the third dimension to alleviate interconnect crowding. Through-silicon vias (TSVs) represent a promising approach to three-dimensional (3D) integration in superconducting qubit arrays -- provided they are compact enough to support densely-packed qubit systems without compromising qubit performance or low-loss signal and control routing. In this work, we demonstrate the integration of superconducting, high-aspect ratio TSVs -- 10 $mu$m wide by 20 $mu$m long by 200 $mu$m deep -- with superconducting qubits. We utilize TSVs for baseband control and high-fidelity microwave readout of qubits using a two-chip, bump-bonded architecture. We also validate the fabrication of qubits directly upon the surface of a TSV-integrated chip. These key 3D integration milestones pave the way for the control and readout of high-density superconducting qubit arrays using superconducting TSVs.
Superconducting qubits are leading candidates in the race to build a quantum computer capable of realizing computations beyond the reach of modern supercomputers. The superconducting qubit modality has been used to demonstrate prototype algorithms in the noisy intermediate scale quantum (NISQ) technology era, in which non-error-corrected qubits are used to implement quantum simulations and quantum algorithms. With the recent demonstrations of multiple high fidelity two-qubit gates as well as operations on logical qubits in extensible superconducting qubit systems, this modality also holds promise for the longer-term goal of building larger-scale error-corrected quantum computers. In this brief review, we discuss several of the recent experimental advances in qubit hardware, gate implementations, readout capabilities, early NISQ algorithm implementations, and quantum error correction using superconducting qubits. While continued work on many aspects of this technology is certainly necessary, the pace of both conceptual and technical progress in the last years has been impressive, and here we hope to convey the excitement stemming from this progress.
We show how the dynamical modulation of the qubit-field coupling strength in a circuit quantum electrodynamics architecture mimics the motion of the qubit at relativistic speeds. This allows us to propose a realistic experiment to detect microwave photons coming from simulated acceleration radiation. Moreover, by combining this technique with the dynamical Casimir physics, we enhance the toolbox for studying relativistic phenomena in quantum field theory with superconducting circuits.
The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. Here we experimentally demonstrate a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا