No Arabic abstract
A Bose-Einstein condensate is the ground state of a dilute gas of bosons, such as atoms cooled to temperatures close to absolute zero. With much smaller mass, excitons (bound electron-hole pairs) are expected to condense at significantly higher temperatures. Here we study electrically generated interlayer excitons in MoSe2/WSe2 atomic double layers with density up to 10^12 cm-2. The interlayer tunneling current depends only on exciton density, indicative of correlated electron-hole pair tunneling. Strong electroluminescence (EL) arises when a hole tunnels from WSe2 to recombine with electron in MoSe2. We observe a critical threshold dependence of the EL intensity on exciton density, accompanied by a super-Poissonian photon statistics near threshold, and a large EL enhancement peaked narrowly at equal electron-hole densities. The phenomenon persists above 100 K, which is consistent with the predicted critical condensation temperature. Our study provides compelling evidence for interlayer exciton condensation in two-dimensional atomic double layers and opens up exciting opportunities for exploring condensate-based optoelectronics and exciton-mediated high-temperature superconductivity.
We observe for the first time two-photon excited condensation of exciton-polaritons. The angle-resolved photoluminescence (PL) from the Lower Polariton (LP) ground state in our planar GaAs-based microcavity structure exhibits a clear intensity threshold as a function of increased two-photon excitation power, coinciding with an interaction-induced blueshift and a narrowing of spectral linewidth, characteristic of the transition from a thermal distribution of lower polaritons to polariton condensation. Two-Photon Absorption (TPA) is evidenced in the quadratic dependence of the input-output curves below and above the threshold region. Second Harmonic Generation (SHG) is ruled out by both this threshold behavior and by scanning the pump photon energy and observing a lack of dependence of the LP emission peak energy. Our results pave the way towards realization of a polariton-based stimulated THz radiation source, stemming from the dipole-allowed transition from the Quantum Well (QW) 2p dark exciton state to the 1s-exciton-based LP ground state, as theoretically predicted in [A. V. Kavokin et al., Phys. Rev. Lett. 108, 197401 (2012)].
Observations of polariton condensation in semiconductor microcavities suggest that polaritons can be exploited as a novel type of laser with low input-power requirements. The low-excitation regime is approximately equivalent to thermal equilibrium, and a higher excitation results in more dominant nonequilibrium features. Although standard photon lasing has been experimentally observed in the high excitation regime, e-h pair binding can still remain even in the high-excitation regime theoretically. Therefore, the photoluminescence with a different photon lasing mechanism is predicted to be different from that with a standard photon lasing. In this paper, we report the temperature dependence of the change in photoluminescence with the excitation density. The second threshold behavior transited to the standard photon lasing is not measured at a low-temperature, high-excitation power regime. Our results suggest that there may still be an electron--hole pair at this regime to give a different photon lasing mechanism.
We examine the photoluminescence of highly-excited exciton-polariton condensates in semiconductor microcavities. Under strong pumping, exciton-polariton condensates have been observed to undergo a lasing transition where strong coupling between the excitons and photons is lost. We discuss an alternative high-density scenario, where the strong coupling is maintained. We find that the photoluminescence smoothly transitions between the lower polariton energy to the cavity photon energy. An intuitive understanding of the change in spectral characteristics is given, as well as differences to the photoluminescence characteristics of the lasing case.
We explore the topological properties of non-Hermitian nodal-link semimetals with dissipative cold atoms in a three-dimensional optical lattice. We construct a two-band continuum model in three dimensions with a spin-dependent gain and loss, where the exceptional points in the energy spectrum can comprise a double Hopf link. The topology of the bulk band is characterized by a winding number defined for a one-dimensional loop in the momentum space and a topological transition of the nodal structures emerges as the change of the non-Hermiticity strength. A non-Bloch theory is built to describe the corresponding lattice model which has anomalous bulk-boundary correspondence. Furthermore, we propose that the model can be realized using ultracold fermionic atoms in an optical lattice and the exceptional nodal links as well as the topological properties can be detected by measuring the atomic spin textures.
Atomically-thin transition metal dichalcogenide crystals (TMDCs) hold great promise for future semiconductor optoelectronics due to their unique electronic and optical properties. In particular, electron-hole pairs (excitons) in TMDCs are stable at room temperature and interact strongly with light. When TMDCs are embedded in an optical microcavity, the excitons can hybridise with cavity photons to form exciton polaritons (polaritons herein), which display both ultrafast velocities and strong interactions. The ability to manipulate and trap polaritons on a microchip is critical for future applications. Here, we create a potential landscape for room-temperature polaritons in monolayer WS$_2$, and demonstrate their free propagation and trapping. We show that the effect of dielectric disorder, which restricts the diffusion of WS$_2$ excitons and broadens their spectral resonance, is dramatically reduced in the strong exciton-photon coupling regime leading to motional narrowing. This enables the ballistic transport of WS$_2$ polaritons across tens of micrometers with an extended range of partial first-order coherence. Moreover, the dephasing of trapped polaritons is dramatically suppressed compared to both WS$_2$ excitons and free polaritons. Our results demonstrate the possibility of long-range transport and efficient trapping of TMDC polaritons in ambient conditions.