Do you want to publish a course? Click here

Double exceptional links in a three-dimensional dissipative cold atomic gas

80   0   0.0 ( 0 )
 Added by Peng He
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the topological properties of non-Hermitian nodal-link semimetals with dissipative cold atoms in a three-dimensional optical lattice. We construct a two-band continuum model in three dimensions with a spin-dependent gain and loss, where the exceptional points in the energy spectrum can comprise a double Hopf link. The topology of the bulk band is characterized by a winding number defined for a one-dimensional loop in the momentum space and a topological transition of the nodal structures emerges as the change of the non-Hermiticity strength. A non-Bloch theory is built to describe the corresponding lattice model which has anomalous bulk-boundary correspondence. Furthermore, we propose that the model can be realized using ultracold fermionic atoms in an optical lattice and the exceptional nodal links as well as the topological properties can be detected by measuring the atomic spin textures.



rate research

Read More

Donors in silicon can now be positioned with an accuracy of about one lattice constant, making it possible in principle to form donor arrays for quantum computation or quantum simulation applications. However the multi-valley character of the silicon conduction band combines with central cell corrections to the donor state Hamiltonian to translate atomic scale imperfections in donor placement into strongly disordered inter-donor hybridization. We present a simple model that is able to account accurately for central-cell corrections, and use it to assess the impact of donor-placement disorder on donor array properties in both itinerant and localized limits.
We analyze the temporal response of the fluorescence light that is emitted from a dense gas of cold atoms driven by a laser. When the average interatomic distance is smaller than the wavelength of the photons scattered by the atoms, the system exhibits strong dipolar interactions and collective dissipation. We solve the exact dynamics of small systems with different geometries and show how these collective features are manifest in the scattered light properties such as the photon emission rate, the power spectrum and the second-order correlation function. By calculating these quantities beyond the weak driving limit, we make progress in understanding the signatures of collective behavior in these many-body systems. Furthermore, we clarify the role of disorder on the resonance fluorescence, of direct relevance for recent experimental efforts that aim at the exploration of many-body effects in dipole-dipole interacting gases of atoms.
For first-order topological semimetals, non-Hermitian perturbations can drive the Weyl nodes into Weyl exceptional rings having multiple topological structures and no Hermitian counterparts. Recently, it was discovered that higher-order Weyl semimetals, as a novel class of higher-order topological phases, can uniquely exhibit coexisting surface and hinge Fermi arcs. However, non-Hermitian higher-order topological semimetals have not yet been explored. Here, we identify a new type of topological semimetals, i.e, a higher-order topological semimetal with Weyl exceptional rings. In such a semimetal, these rings are characterized by both a spectral winding number and a Chern number. Moreover, the higher-order Weyl-exceptional-ring semimetal supports both surface and hinge Fermi-arc states, which are bounded by the projection of the Weyl exceptional rings onto the surface and hinge, respectively. Noticeably, the dissipative terms can cause the coupling of two exceptional rings with opposite topological charges, so as to induce topological phase transitions. Our studies open new avenues for exploring novel higher-order topological semimetals in non-Hermitian systems.
We report investigation of near-resonance light scattering from a cold and dense atomic gas of $^{87}$Rb atoms. Measurements are made for probe frequencies tuned near the $F=2to F=3$ nearly closed hyperfine transition, with particular attention paid to the dependence of the scattered light intensity on detuning from resonance, the number of atoms in the sample, and atomic sample size. We find that, over a wide range of experimental variables, the optical depth of the atomic sample serves as an effective single scaling parameter which describes well all the experimental data.
We investigate the dipole mediated transport of Rydberg impurities through an ultracold gas of atoms excited to an auxiliary Rydberg state. In one experiment we continuously probe the system by coupling the auxiliary Rydberg state to a rapidly decaying state which realizes a dissipative medium. In-situ imaging of the impurities reveals diffusive spreading controlled by the intensity of the probe laser. By preparing the same density of hopping partners but then switching off the dressing fields the spreading is effectively frozen. This is consistent with numerical simulations which indicate the coherently evolving system enters a non-ergodic extended phase due to disorder. This opens the way to study transport and localization phenomena in systems with long-range hopping and controllable dissipation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا