No Arabic abstract
We present Supervision by Registration and Triangulation (SRT), an unsupervised approach that utilizes unlabeled multi-view video to improve the accuracy and precision of landmark detectors. Being able to utilize unlabeled data enables our detectors to learn from massive amounts of unlabeled data freely available and not be limited by the quality and quantity of manual human annotations. To utilize unlabeled data, there are two key observations: (1) the detections of the same landmark in adjacent frames should be coherent with registration, i.e., optical flow. (2) the detections of the same landmark in multiple synchronized and geometrically calibrated views should correspond to a single 3D point, i.e., multi-view consistency. Registration and multi-view consistency are sources of supervision that do not require manual labeling, thus it can be leveraged to augment existing training data during detector training. End-to-end training is made possible by differentiable registration and 3D triangulation modules. Experiments with 11 datasets and a newly proposed metric to measure precision demonstrate accuracy and precision improvements in landmark detection on both images and video. Code is available at https://github.com/D-X-Y/landmark-detection.
In this paper, we present supervision-by-registration, an unsupervised approach to improve the precision of facial landmark detectors on both images and video. Our key observation is that the detections of the same landmark in adjacent frames should be coherent with registration, i.e., optical flow. Interestingly, the coherency of optical flow is a source of supervision that does not require manual labeling, and can be leveraged during detector training. For example, we can enforce in the training loss function that a detected landmark at frame$_{t-1}$ followed by optical flow tracking from frame$_{t-1}$ to frame$_t$ should coincide with the location of the detection at frame$_t$. Essentially, supervision-by-registration augments the training loss function with a registration loss, thus training the detector to have output that is not only close to the annotations in labeled images, but also consistent with registration on large amounts of unlabeled videos. End-to-end training with the registration loss is made possible by a differentiable Lucas-Kanade operation, which computes optical flow registration in the forward pass, and back-propagates gradients that encourage temporal coherency in the detector. The output of our method is a more precise image-based facial landmark detector, which can be applied to single images or video. With supervision-by-registration, we demonstrate (1) improvements in facial landmark detection on both images (300W, ALFW) and video (300VW, Youtube-Celebrities), and (2) significant reduction of jittering in video detections.
Caricature is an artistic abstraction of the human face by distorting or exaggerating certain facial features, while still retains a likeness with the given face. Due to the large diversity of geometric and texture variations, automatic landmark detection and 3D face reconstruction for caricature is a challenging problem and has rarely been studied before. In this paper, we propose the first automatic method for this task by a novel 3D approach. To this end, we first build a dataset with various styles of 2D caricatures and their corresponding 3D shapes, and then build a parametric model on vertex based deformation space for 3D caricature face. Based on the constructed dataset and the nonlinear parametric model, we propose a neural network based method to regress the 3D face shape and orientation from the input 2D caricature image. Ablation studies and comparison with state-of-the-art methods demonstrate the effectiveness of our algorithm design. Extensive experimental results demonstrate that our method works well for various caricatures. Our constructed dataset, source code and trained model are available at https://github.com/Juyong/CaricatureFace.
In this work, we propose UPDesc, an unsupervised method to learn point descriptors for robust point cloud registration. Our work builds upon a recent supervised 3D CNN-based descriptor extraction framework, namely, 3DSmoothNet, which leverages a voxel-based representation to parameterize the surrounding geometry of interest points. Instead of using a predefined fixed-size local support in voxelization, which potentially limits the access of richer local geometry information, we propose to learn the support size in a data-driven manner. To this end, we design a differentiable voxelization module that can back-propagate gradients to the support size optimization. To optimize descriptor similarity, the prior 3D CNN work and other supervised methods require abundant correspondence labels or pose annotations of point clouds for crafting metric learning losses. Differently, we show that unsupervised learning of descriptor similarity can be achieved by performing geometric registration in networks. Our learning objectives consider descriptor similarity both across and within point clouds without supervision. Through extensive experiments on point cloud registration benchmarks, we show that our learned descriptors yield superior performance over existing unsupervised methods.
Learning non-rigid registration in an end-to-end manner is challenging due to the inherent high degrees of freedom and the lack of labeled training data. In this paper, we resolve these two challenges simultaneously. First, we propose to represent the non-rigid transformation with a point-wise combination of several rigid transformations. This representation not only makes the solution space well-constrained but also enables our method to be solved iteratively with a recurrent framework, which greatly reduces the difficulty of learning. Second, we introduce a differentiable loss function that measures the 3D shape similarity on the projected multi-view 2D depth images so that our full framework can be trained end-to-end without ground truth supervision. Extensive experiments on several different datasets demonstrate that our proposed method outperforms the previous state-of-the-art by a large margin. The source codes are available at https://github.com/WanquanF/RMA-Net.
Detecting dense landmarks for diverse clothes, as a fundamental technique for clothes analysis, has attracted increasing research attention due to its huge application potential. However, due to the lack of modeling underlying semantic layout constraints among landmarks, prior works often detect ambiguous and structure-inconsistent landmarks of multiple overlapped clothes in one person. In this paper, we propose to seamlessly enforce structural layout relationships among landmarks on the intermediate representations via multiple stacked layout-graph reasoning layers. We define the layout-graph as a hierarchical structure including a root node, body-part nodes (e.g. upper body, lower body), coarse clothes-part nodes (e.g. collar, sleeve) and leaf landmark nodes (e.g. left-collar, right-collar). Each Layout-Graph Reasoning(LGR) layer aims to map feature representations into structural graph nodes via a Map-to-Node module, performs reasoning over structural graph nodes to achieve global layout coherency via a layout-graph reasoning module, and then maps graph nodes back to enhance feature representations via a Node-to-Map module. The layout-graph reasoning module integrates a graph clustering operation to generate representations of intermediate nodes (bottom-up inference) and then a graph deconvolution operation (top-down inference) over the whole graph. Extensive experiments on two public fashion landmark datasets demonstrate the superiority of our model. Furthermore, to advance the fine-grained fashion landmark research for supporting more comprehensive clothes generation and attribute recognition, we contribute the first Fine-grained Fashion Landmark Dataset (FFLD) containing 200k images annotated with at most 32 key-points for 13 clothes types.