Do you want to publish a course? Click here

Layout-Graph Reasoning for Fashion Landmark Detection

263   0   0.0 ( 0 )
 Added by Weijiang Yu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Detecting dense landmarks for diverse clothes, as a fundamental technique for clothes analysis, has attracted increasing research attention due to its huge application potential. However, due to the lack of modeling underlying semantic layout constraints among landmarks, prior works often detect ambiguous and structure-inconsistent landmarks of multiple overlapped clothes in one person. In this paper, we propose to seamlessly enforce structural layout relationships among landmarks on the intermediate representations via multiple stacked layout-graph reasoning layers. We define the layout-graph as a hierarchical structure including a root node, body-part nodes (e.g. upper body, lower body), coarse clothes-part nodes (e.g. collar, sleeve) and leaf landmark nodes (e.g. left-collar, right-collar). Each Layout-Graph Reasoning(LGR) layer aims to map feature representations into structural graph nodes via a Map-to-Node module, performs reasoning over structural graph nodes to achieve global layout coherency via a layout-graph reasoning module, and then maps graph nodes back to enhance feature representations via a Node-to-Map module. The layout-graph reasoning module integrates a graph clustering operation to generate representations of intermediate nodes (bottom-up inference) and then a graph deconvolution operation (top-down inference) over the whole graph. Extensive experiments on two public fashion landmark datasets demonstrate the superiority of our model. Furthermore, to advance the fine-grained fashion landmark research for supporting more comprehensive clothes generation and attribute recognition, we contribute the first Fine-grained Fashion Landmark Dataset (FFLD) containing 200k images annotated with at most 32 key-points for 13 clothes types.



rate research

Read More

95 - Sijie Yan , Ziwei Liu , Ping Luo 2017
Fashion landmarks are functional key points defined on clothes, such as corners of neckline, hemline, and cuff. They have been recently introduced as an effective visual representation for fashion image understanding. However, detecting fashion landmarks are challenging due to background clutters, human poses, and scales. To remove the above variations, previous works usually assumed bounding boxes of clothes are provided in training and test as additional annotations, which are expensive to obtain and inapplicable in practice. This work addresses unconstrained fashion landmark detection, where clothing bounding boxes are not provided in both training and test. To this end, we present a novel Deep LAndmark Network (DLAN), where bounding boxes and landmarks are jointly estimated and trained iteratively in an end-to-end manner. DLAN contains two dedicated modules, including a Selective Dilated Convolution for handling scale discrepancies, and a Hierarchical Recurrent Spatial Transformer for handling background clutters. To evaluate DLAN, we present a large-scale fashion landmark dataset, namely Unconstrained Landmark Database (ULD), consisting of 30K images. Statistics show that ULD is more challenging than existing datasets in terms of image scales, background clutters, and human poses. Extensive experiments demonstrate the effectiveness of DLAN over the state-of-the-art methods. DLAN also exhibits excellent generalization across different clothing categories and modalities, making it extremely suitable for real-world fashion analysis.
Research on automated, image based identification of clothing categories and fashion landmarks has recently gained significant interest due to its potential impact on areas such as robotic clothing manipulation, automated clothes sorting and recycling, and online shopping. Several public and annotated fashion datasets have been created to facilitate research advances in this direction. In this work, we make the first step towards leveraging the data and techniques developed for fashion image analysis in vision-based robotic clothing manipulation tasks. We focus on techniques that can generalize from large-scale fashion datasets to less structured, small datasets collected in a robotic lab. Specifically, we propose training data augmentation methods such as elastic warping, and model adjustments such as rotation invariant convolutions to make the model generalize better. Our experiments demonstrate that our approach outperforms stateof-the art models with respect to clothing category classification and fashion landmark detection when tested on previously unseen datasets. Furthermore, we present experimental results on a new dataset composed of images where a robot holds different garments, collected in our lab.
Matching clothing images from customers and online shopping stores has rich applications in E-commerce. Existing algorithms encoded an image as a global feature vector and performed retrieval with the global representation. However, discriminative local information on clothes are submerged in this global representation, resulting in sub-optimal performance. To address this issue, we propose a novel Graph Reasoning Network (GRNet) on a Similarity Pyramid, which learns similarities between a query and a gallery cloth by using both global and local representations in multiple scales. The similarity pyramid is represented by a Graph of similarity, where nodes represent similarities between clothing components at different scales, and the final matching score is obtained by message passing along edges. In GRNet, graph reasoning is solved by training a graph convolutional network, enabling to align salient clothing components to improve clothing retrieval. To facilitate future researches, we introduce a new benchmark FindFashion, containing rich annotations of bounding boxes, views, occlusions, and cropping. Extensive experiments show that GRNet obtains new state-of-the-art results on two challenging benchmarks, e.g., pushing the top-1, top-20, and top-50 accuracies on DeepFashion to 26%, 64%, and 75% (i.e., 4%, 10%, and 10% absolute improvements), outperforming competitors with large margins. On FindFashion, GRNet achieves considerable improvements on all empirical settings.
Image landmark detection aims to automatically identify the locations of predefined fiducial points. Despite recent success in this field, higher-ordered structural modeling to capture implicit or explicit relationships among anatomical landmarks has not been adequately exploited. In this work, we present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical (e.g., hand, pelvis) landmark detection. The proposed method constructs graph signals leveraging both local image features and global shape features. The adaptive graph topology naturally explores and lands on task-specific structures which are learned end-to-end with two Graph Convolutional Networks (GCNs). Extensive experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis). Quantitative results comparing with the previous state-of-the-art approaches across all studied datasets indicating the superior performance in both robustness and accuracy. Qualitative visualizations of the learned graph topologies demonstrate a physically plausible connectivity laying behind the landmarks.
Arbitrary shape text detection is a challenging task due to the high variety and complexity of scenes texts. In this paper, we propose a novel unified relational reasoning graph network for arbitrary shape text detection. In our method, an innovative local graph bridges a text proposal model via Convolutional Neural Network (CNN) and a deep relational reasoning network via Graph Convolutional Network (GCN), making our network end-to-end trainable. To be concrete, every text instance will be divided into a series of small rectangular components, and the geometry attributes (e.g., height, width, and orientation) of the small components will be estimated by our text proposal model. Given the geometry attributes, the local graph construction model can roughly establish linkages between different text components. For further reasoning and deducing the likelihood of linkages between the component and its neighbors, we adopt a graph-based network to perform deep relational reasoning on local graphs. Experiments on public available datasets demonstrate the state-of-the-art performance of our method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا