Do you want to publish a course? Click here

Recurrent Multi-view Alignment Network for Unsupervised Surface Registration

189   0   0.0 ( 0 )
 Added by Wanquan Feng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Learning non-rigid registration in an end-to-end manner is challenging due to the inherent high degrees of freedom and the lack of labeled training data. In this paper, we resolve these two challenges simultaneously. First, we propose to represent the non-rigid transformation with a point-wise combination of several rigid transformations. This representation not only makes the solution space well-constrained but also enables our method to be solved iteratively with a recurrent framework, which greatly reduces the difficulty of learning. Second, we introduce a differentiable loss function that measures the 3D shape similarity on the projected multi-view 2D depth images so that our full framework can be trained end-to-end without ground truth supervision. Extensive experiments on several different datasets demonstrate that our proposed method outperforms the previous state-of-the-art by a large margin. The source codes are available at https://github.com/WanquanF/RMA-Net.



rate research

Read More

In this work, we propose UPDesc, an unsupervised method to learn point descriptors for robust point cloud registration. Our work builds upon a recent supervised 3D CNN-based descriptor extraction framework, namely, 3DSmoothNet, which leverages a voxel-based representation to parameterize the surrounding geometry of interest points. Instead of using a predefined fixed-size local support in voxelization, which potentially limits the access of richer local geometry information, we propose to learn the support size in a data-driven manner. To this end, we design a differentiable voxelization module that can back-propagate gradients to the support size optimization. To optimize descriptor similarity, the prior 3D CNN work and other supervised methods require abundant correspondence labels or pose annotations of point clouds for crafting metric learning losses. Differently, we show that unsupervised learning of descriptor similarity can be achieved by performing geometric registration in networks. Our learning objectives consider descriptor similarity both across and within point clouds without supervision. Through extensive experiments on point cloud registration benchmarks, we show that our learned descriptors yield superior performance over existing unsupervised methods.
Triangulated meshes have become ubiquitous discrete-surface representations. In this paper we address the problem of how to maintain the manifold properties of a surface while it undergoes strong deformations that may cause topological changes. We introduce a new self-intersection removal algorithm, TransforMesh, and we propose a mesh evolution framework based on this algorithm. Numerous shape modelling applications use surface evolution in order to improve shape properties, such as appearance or accuracy. Both explicit and implicit representations can be considered for that purpose. However, explicit mesh representations, while allowing for accurate surface modelling, suffer from the inherent difficulty of reliably dealing with self-intersections and topological changes such as merges and splits. As a consequence, a majority of methods rely on implicit representations of surfaces, e.g. level-sets, that naturally overcome these issues. Nevertheless, these methods are based on volumetric discretizations, which introduce an unwanted precision-complexity trade-off. The method that we propose handles topological changes in a robust manner and removes self intersections, thus overcoming the traditional limitations of mesh-based approaches. To illustrate the effectiveness of TransforMesh, we describe two challenging applications, namely surface morphing and 3-D reconstruction.
Deformable image registration is widely utilized in medical image analysis, but most proposed methods fail in the situation of complex deformations. In this paper, we pre-sent a cascaded feature warping network to perform the coarse-to-fine registration. To achieve this, a shared-weights encoder network is adopted to generate the feature pyramids for the unaligned images. The feature warping registration module is then used to estimate the deformation field at each level. The coarse-to-fine manner is implemented by cascading the module from the bottom level to the top level. Furthermore, the multi-scale loss is also introduced to boost the registration performance. We employ two public benchmark datasets and conduct various experiments to evaluate our method. The results show that our method outperforms the state-of-the-art methods, which also demonstrates that the cascaded feature warping network can perform the coarse-to-fine registration effectively and efficiently.
We propose a learning-based approach for novel view synthesis for multi-camera 360$^{circ}$ panorama capture rigs. Previous work constructs RGBD panoramas from such data, allowing for view synthesis with small amounts of translation, but cannot handle the disocclusions and view-dependent effects that are caused by large translations. To address this issue, we present a novel scene representation - Multi Depth Panorama (MDP) - that consists of multiple RGBD$alpha$ panoramas that represent both scene geometry and appearance. We demonstrate a deep neural network-based method to reconstruct MDPs from multi-camera 360$^{circ}$ images. MDPs are more compact than previous 3D scene representations and enable high-quality, efficient new view rendering. We demonstrate this via experiments on both synthetic and real data and comparisons with previous state-of-the-art methods spanning both learning-based approaches and classical RGBD-based methods.
Recovering the 3D geometry of a purely texture-less object with generally unknown surface reflectance (e.g. non-Lambertian) is regarded as a challenging task in multi-view reconstruction. The major obstacle revolves around establishing cross-view correspondences where photometric constancy is violated. This paper proposes a simple and practical solution to overcome this challenge based on a co-located camera-light scanner device. Unlike existing solutions, we do not explicitly solve for correspondence. Instead, we argue the problem is generally well-posed by multi-view geometrical and photometric constraints, and can be solved from a small number of input views. We formulate the reconstruction task as a joint energy minimization over the surface geometry and reflectance. Despite this energy is highly non-convex, we develop an optimization algorithm that robustly recovers globally optimal shape and reflectance even from a random initialization. Extensive experiments on both simulated and real data have validated our method, and possible future extensions are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا