No Arabic abstract
Natural Language (NL) descriptions can be one of the most convenient or the only way to interact with systems built to understand and detect city scale traffic patterns and vehicle-related events. In this paper, we extend the widely adopted CityFlow Benchmark with NL descriptions for vehicle targets and introduce the CityFlow-NL Benchmark. The CityFlow-NL contains more than 5,000 unique and precise NL descriptions of vehicle targets, making it the first multi-target multi-camera tracking with NL descriptions dataset to our knowledge. Moreover, the dataset facilitates research at the intersection of multi-object tracking, retrieval by NL descriptions, and temporal localization of events. In this paper, we focus on two foundational tasks: the Vehicle Retrieval by NL task and the Vehicle Tracking by NL task, which take advantage of the proposed CityFlow-NL benchmark and provide a strong basis for future research on the multi-target multi-camera tracking by NL description task.
We propose a novel Siamese Natural Language Tracker (SNLT), which brings the advancements in visual tracking to the tracking by natural language (NL) descriptions task. The proposed SNLT is applicable to a wide range of Siamese trackers, providing a new class of baselines for the tracking by NL task and promising future improvements from the advancements of Siamese trackers. The carefully designed architecture of the Siamese Natural Language Region Proposal Network (SNL-RPN), together with the Dynamic Aggregation of vision and language modalities, is introduced to perform the tracking by NL task. Empirical results over tracking benchmarks with NL annotations show that the proposed SNLT improves Siamese trackers by 3 to 7 percentage points with a slight tradeoff of speed. The proposed SNLT outperforms all NL trackers to-date and is competitive among state-of-the-art real-time trackers on LaSOT benchmarks while running at 50 frames per second on a single GPU.
Urban traffic optimization using traffic cameras as sensors is driving the need to advance state-of-the-art multi-target multi-camera (MTMC) tracking. This work introduces CityFlow, a city-scale traffic camera dataset consisting of more than 3 hours of synchronized HD videos from 40 cameras across 10 intersections, with the longest distance between two simultaneous cameras being 2.5 km. To the best of our knowledge, CityFlow is the largest-scale dataset in terms of spatial coverage and the number of cameras/videos in an urban environment. The dataset contains more than 200K annotated bounding boxes covering a wide range of scenes, viewing angles, vehicle models, and urban traffic flow conditions. Camera geometry and calibration information are provided to aid spatio-temporal analysis. In addition, a subset of the benchmark is made available for the task of image-based vehicle re-identification (ReID). We conducted an extensive experimental evaluation of baselines/state-of-the-art approaches in MTMC tracking, multi-target single-camera (MTSC) tracking, object detection, and image-based ReID on this dataset, analyzing the impact of different network architectures, loss functions, spatio-temporal models and their combinations on task effectiveness. An evaluation server is launched with the release of our benchmark at the 2019 AI City Challenge (https://www.aicitychallenge.org/) that allows researchers to compare the performance of their newest techniques. We expect this dataset to catalyze research in this field, propel the state-of-the-art forward, and lead to deployed traffic optimization(s) in the real world.
Multi-Target Multi-Camera Tracking has a wide range of applications and is the basis for many advanced inferences and predictions. This paper describes our solution to the Track 3 multi-camera vehicle tracking task in 2021 AI City Challenge (AICITY21). This paper proposes a multi-target multi-camera vehicle tracking framework guided by the crossroad zones. The framework includes: (1) Use mature detection and vehicle re-identification models to extract targets and appearance features. (2) Use modified JDETracker (without detection module) to track single-camera vehicles and generate single-camera tracklets. (3) According to the characteristics of the crossroad, the Tracklet Filter Strategy and the Direction Based Temporal Mask are proposed. (4) Propose Sub-clustering in Adjacent Cameras for multi-camera tracklets matching. Through the above techniques, our method obtained an IDF1 score of 0.8095, ranking first on the leaderboard. The code have released: https://github.com/LCFractal/AIC21-MTMC.
Vehicle search is one basic task for the efficient traffic management in terms of the AI City. Most existing practices focus on the image-based vehicle matching, including vehicle re-identification and vehicle tracking. In this paper, we apply one new modality, i.e., the language description, to search the vehicle of interest and explore the potential of this task in the real-world scenario. The natural language-based vehicle search poses one new challenge of fine-grained understanding of both vision and language modalities. To connect language and vision, we propose to jointly train the state-of-the-art vision models with the transformer-based language model in an end-to-end manner. Except for the network structure design and the training strategy, several optimization objectives are also re-visited in this work. The qualitative and quantitative experiments verify the effectiveness of the proposed method. Our proposed method has achieved the 1st place on the 5th AI City Challenge, yielding competitive performance 18.69% MRR accuracy on the private test set. We hope this work can pave the way for the future study on using language description effectively and efficiently for real-world vehicle retrieval systems. The code will be available at https://github.com/ShuaiBai623/AIC2021-T5-CLV.
In this paper, we propose a novel method for video moment retrieval (VMR) that achieves state of the arts (SOTA) performance on R@1 metrics and surpassing the SOTA on the high IoU metric (R@1, IoU=0.7). First, we propose to use a multi-head self-attention mechanism, and further a cross-attention scheme to capture video/query interaction and long-range query dependencies from video context. The attention-based methods can develop frame-to-query interaction and query-to-frame interaction at arbitrary positions and the multi-head setting ensures the sufficient understanding of complicated dependencies. Our model has a simple architecture, which enables faster training and inference while maintaining . Second, We also propose to use multiple task training objective consists of moment segmentation task, start/end distribution prediction and start/end location regression task. We have verified that start/end prediction are noisy due to annotator disagreement and joint training with moment segmentation task can provide richer information since frames inside the target clip are also utilized as positive training examples. Third, we propose to use an early fusion approach, which achieves better performance at the cost of inference time. However, the inference time will not be a problem for our model since our model has a simple architecture which enables efficient training and inference.