Do you want to publish a course? Click here

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones

99   0   0.0 ( 0 )
 Added by Chong Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Multi-Target Multi-Camera Tracking has a wide range of applications and is the basis for many advanced inferences and predictions. This paper describes our solution to the Track 3 multi-camera vehicle tracking task in 2021 AI City Challenge (AICITY21). This paper proposes a multi-target multi-camera vehicle tracking framework guided by the crossroad zones. The framework includes: (1) Use mature detection and vehicle re-identification models to extract targets and appearance features. (2) Use modified JDETracker (without detection module) to track single-camera vehicles and generate single-camera tracklets. (3) According to the characteristics of the crossroad, the Tracklet Filter Strategy and the Direction Based Temporal Mask are proposed. (4) Propose Sub-clustering in Adjacent Cameras for multi-camera tracklets matching. Through the above techniques, our method obtained an IDF1 score of 0.8095, ranking first on the leaderboard. The code have released: https://github.com/LCFractal/AIC21-MTMC.



rate research

Read More

Urban traffic optimization using traffic cameras as sensors is driving the need to advance state-of-the-art multi-target multi-camera (MTMC) tracking. This work introduces CityFlow, a city-scale traffic camera dataset consisting of more than 3 hours of synchronized HD videos from 40 cameras across 10 intersections, with the longest distance between two simultaneous cameras being 2.5 km. To the best of our knowledge, CityFlow is the largest-scale dataset in terms of spatial coverage and the number of cameras/videos in an urban environment. The dataset contains more than 200K annotated bounding boxes covering a wide range of scenes, viewing angles, vehicle models, and urban traffic flow conditions. Camera geometry and calibration information are provided to aid spatio-temporal analysis. In addition, a subset of the benchmark is made available for the task of image-based vehicle re-identification (ReID). We conducted an extensive experimental evaluation of baselines/state-of-the-art approaches in MTMC tracking, multi-target single-camera (MTSC) tracking, object detection, and image-based ReID on this dataset, analyzing the impact of different network architectures, loss functions, spatio-temporal models and their combinations on task effectiveness. An evaluation server is launched with the release of our benchmark at the 2019 AI City Challenge (https://www.aicitychallenge.org/) that allows researchers to compare the performance of their newest techniques. We expect this dataset to catalyze research in this field, propel the state-of-the-art forward, and lead to deployed traffic optimization(s) in the real world.
Natural Language (NL) descriptions can be one of the most convenient or the only way to interact with systems built to understand and detect city scale traffic patterns and vehicle-related events. In this paper, we extend the widely adopted CityFlow Benchmark with NL descriptions for vehicle targets and introduce the CityFlow-NL Benchmark. The CityFlow-NL contains more than 5,000 unique and precise NL descriptions of vehicle targets, making it the first multi-target multi-camera tracking with NL descriptions dataset to our knowledge. Moreover, the dataset facilitates research at the intersection of multi-object tracking, retrieval by NL descriptions, and temporal localization of events. In this paper, we focus on two foundational tasks: the Vehicle Retrieval by NL task and the Vehicle Tracking by NL task, which take advantage of the proposed CityFlow-NL benchmark and provide a strong basis for future research on the multi-target multi-camera tracking by NL description task.
Although many methods perform well in single camera tracking, multi-camera tracking remains a challenging problem with less attention. DukeMTMC is a large-scale, well-annotated multi-camera tracking benchmark which makes great progress in this field. This report is dedicated to briefly introduce our method on DukeMTMC and show that simple hierarchical clustering with well-trained person re-identification features can get good results on this dataset.
Multi-target multi-camera tracking (MTMCT) systems track targets across cameras. Due to the continuity of target trajectories, tracking systems usually restrict their data association within a local neighborhood. In single camera tracking, local neighborhood refers to consecutive frames; in multi-camera tracking, it refers to neighboring cameras that the target may appear successively. For similarity estimation, tracking systems often adopt appearance features learned from the re-identification (re-ID) perspective. Different from tracking, re-ID usually does not have access to the trajectory cues that can limit the search space to a local neighborhood. Due to its global matching property, the re-ID perspective requires to learn global appearance features. We argue that the mismatch between the local matching procedure in tracking and the global nature of re-ID appearance features may compromise MTMCT performance. To fit the local matching procedure in MTMCT, in this work, we introduce locality aware appearance metric (LAAM). Specifically, we design an intra-camera metric for single camera tracking, and an inter-camera metric for multi-camera tracking. Both metrics are trained with data pairs sampled from their corresponding local neighborhoods, as opposed to global sampling in the re-ID perspective. We show that the locally learned metrics can be successfully applied on top of several globally learned re-ID features. With the proposed method, we report new state-of-the-art performance on the DukeMTMC dataset, and a substantial improvement on the CityFlow dataset.
267 - Zheng Tang , Gaoang Wang , Tao Liu 2017
Tracking of multiple objects is an important application in AI City geared towards solving salient problems related to safety and congestion in an urban environment. Frequent occlusion in traffic surveillance has been a major problem in this research field. In this challenge, we propose a model-based vehicle localization method, which builds a kernel at each patch of the 3D deformable vehicle model and associates them with constraints in 3D space. The proposed method utilizes shape fitness evaluation besides color information to track vehicle objects robustly and efficiently. To build 3D car models in a fully unsupervised manner, we also implement evolutionary camera self-calibration from tracking of walking humans to automatically compute camera parameters. Additionally, the segmented foreground masks which are crucial to 3D modeling and camera self-calibration are adaptively refined by multiple-kernel feedback from tracking. For object detection/classification, the state-of-the-art single shot multibox detector (SSD) is adopted to train and test on the NVIDIA AI City Dataset. To improve the accuracy on categories with only few objects, like bus, bicycle and motorcycle, we also employ the pretrained model from YOLO9000 with multi-scale testing. We combine the results from SSD and YOLO9000 based on ensemble learning. Experiments show that our proposed tracking system outperforms both state-of-the-art of tracking by segmentation and tracking by detection.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا