Do you want to publish a course? Click here

Video Moment Retrieval via Natural Language Queries

126   0   0.0 ( 0 )
 Added by Xinli Yu T
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a novel method for video moment retrieval (VMR) that achieves state of the arts (SOTA) performance on R@1 metrics and surpassing the SOTA on the high IoU metric (R@1, IoU=0.7). First, we propose to use a multi-head self-attention mechanism, and further a cross-attention scheme to capture video/query interaction and long-range query dependencies from video context. The attention-based methods can develop frame-to-query interaction and query-to-frame interaction at arbitrary positions and the multi-head setting ensures the sufficient understanding of complicated dependencies. Our model has a simple architecture, which enables faster training and inference while maintaining . Second, We also propose to use multiple task training objective consists of moment segmentation task, start/end distribution prediction and start/end location regression task. We have verified that start/end prediction are noisy due to annotator disagreement and joint training with moment segmentation task can provide richer information since frames inside the target clip are also utilized as positive training examples. Third, we propose to use an early fusion approach, which achieves better performance at the cost of inference time. However, the inference time will not be a problem for our model since our model has a simple architecture which enables efficient training and inference.



rate research

Read More

Natural language object retrieval is a highly useful yet challenging task for robots in human-centric environments. Previous work has primarily focused on commands specifying the desired objects type such as scissors and/or visual attributes such as red, thus limiting the robot to only known object classes. We develop a model to retrieve objects based on descriptions of their usage. The model takes in a language command containing a verb, for example Hand me something to cut, and RGB images of candidate objects and selects the object that best satisfies the task specified by the verb. Our model directly predicts an objects appearance from the objects use specified by a verb phrase. We do not need to explicitly specify an objects class label. Our approach allows us to predict high level concepts like an objects utility based on the language query. Based on contextual information present in the language commands, our model can generalize to unseen object classes and unknown nouns in the commands. Our model correctly selects objects out of sets of five candidates to fulfill natural language commands, and achieves an average accuracy of 62.3% on a held-out test set of unseen ImageNet object classes and 53.0% on unseen object classes and unknown nouns. Our model also achieves an average accuracy of 54.7% on unseen YCB object classes, which have a different image distribution from ImageNet objects. We demonstrate our model on a KUKA LBR iiwa robot arm, enabling the robot to retrieve objects based on natural language descriptions of their usage. We also present a new dataset of 655 verb-object pairs denoting object usage over 50 verbs and 216 object classes.
Detecting customized moments and highlights from videos given natural language (NL) user queries is an important but under-studied topic. One of the challenges in pursuing this direction is the lack of annotated data. To address this issue, we present the Query-based Video Highlights (QVHighlights) dataset. It consists of over 10,000 YouTube videos, covering a wide range of topics, from everyday activities and travel in lifestyle vlog videos to social and political activities in news videos. Each video in the dataset is annotated with: (1) a human-written free-form NL query, (2) relevant moments in the video w.r.t. the query, and (3) five-point scale saliency scores for all query-relevant clips. This comprehensive annotation enables us to develop and evaluate systems that detect relevant moments as well as salient highlights for diverse, flexible user queries. We also present a strong baseline for this task, Moment-DETR, a transformer encoder-decoder model that views moment retrieval as a direct set prediction problem, taking extracted video and query representations as inputs and predicting moment coordinates and saliency scores end-to-end. While our model does not utilize any human prior, we show that it performs competitively when compared to well-engineered architectures. With weakly supervised pretraining using ASR captions, Moment-DETR substantially outperforms previous methods. Lastly, we present several ablations and visualizations of Moment-DETR. Data and code is publicly available at https://github.com/jayleicn/moment_detr
We consider the task of retrieving audio using free-form natural language queries. To study this problem, which has received limited attention in the existing literature, we introduce challenging new benchmarks for text-based audio retrieval using text annotations sourced from the Audiocaps and Clotho datasets. We then employ these benchmarks to establish baselines for cross-modal audio retrieval, where we demonstrate the benefits of pre-training on diverse audio tasks. We hope that our benchmarks will inspire further research into cross-modal text-based audio retrieval with free-form text queries.
194 - Lili Mou , Zhengdong Lu , Hang Li 2016
Building neural networks to query a knowledge base (a table) with natural language is an emerging research topic in deep learning. An executor for table querying typically requires multiple steps of execution because queries may have complicated structures. In previous studies, researchers have developed either fully distributed executors or symbolic executors for table querying. A distributed executor can be trained in an end-to-end fashion, but is weak in terms of execution efficiency and explicit interpretability. A symbolic executor is efficient in execution, but is very difficult to train especially at initial stages. In this paper, we propose to couple distributed and symbolic execution for natural language queries, where the symbolic executor is pretrained with the distributed executors intermediate execution results in a step-by-step fashion. Experiments show that our approach significantly outperforms both distributed and symbolic executors, exhibiting high accuracy, high learning efficiency, high execution efficiency, and high interpretability.
This paper explores the task of interactive image retrieval using natural language queries, where a user progressively provides input queries to refine a set of retrieval results. Moreover, our work explores this problem in the context of complex image scenes containing multiple objects. We propose Drill-down, an effective framework for encoding multiple queries with an efficient compact state representation that significantly extends current methods for single-round image retrieval. We show that using multiple rounds of natural language queries as input can be surprisingly effective to find arbitrarily specific images of complex scenes. Furthermore, we find that existing image datasets with textual captions can provide a surprisingly effective form of weak supervision for this task. We compare our method with existing sequential encoding and embedding networks, demonstrating superior performance on two proposed benchmarks: automatic image retrieval on a simulated scenario that uses region captions as queries, and interactive image retrieval using real queries from human evaluators.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا