No Arabic abstract
Theoretical and experimental investigations of the interaction between spins and temperature gradients are vital for the development of spin caloritronics, and can dictate the design of future spintronics devices. In this work, we propose a two-terminal cold-atom simulator to study that interaction. The proposed quantum simulator consists of strongly interacting atoms that occupy two reservoirs connected by a one-dimensional link. The reservoirs are kept at different temperatures. We show the existence of a spin current in this system by studying the dynamics that follows a spin-flip of an atom in the link. We argue that the dynamics in the link can be described using an inhomogeneous Heisenberg chain whose couplings are defined by the local temperature. A temperature gradient accelerates the impurity in one direction more than in the other, leading to an overall spin current. Therefore, our study offers a way to simulate certain features of the spin Seebeck effect with cold atoms.
Understanding the effects of spin-orbit coupling (SOC) and many-body interactions on spin transport is important in condensed matter physics and spintronics. This topic has been intensively studied for spin carriers such as electrons but barely explored for charge-neutral bosonic quasiparticles (including their condensates), which hold promises for coherent spin transport over macroscopic distances. Here, we explore the effects of synthetic SOC (induced by optical Raman coupling) and atomic interactions on the spin transport in an atomic Bose-Einstein condensate (BEC), where the spin-dipole mode (SDM, actuated by quenching the Raman coupling) of two interacting spin components constitutes an alternating spin current. We experimentally observe that SOC significantly enhances the SDM damping while reducing the thermalization (the reduction of the condensate fraction). We also observe generation of BEC collective excitations such as shape oscillations. Our theory reveals that the SOC-modified interference, immiscibility, and interaction between the spin components can play crucial roles in spin transport.
We report on the experimental realization and detection of dynamical currents in a spin-textured lattice in momentum space. Collective tunneling is implemented via cavity-assisted Raman scattering of photons by a spinor Bose-Einstein condensate into an optical cavity. The photon field inducing the tunneling processes is subject to cavity dissipation, resulting in effective directional dynamics in a non-Hermitian setting. We observe that the individual tunneling events are superradiant in nature and locally resolve them in the lattice by performing real-time, frequency-resolved measurements of the leaking cavity field. The results can be extended to a regime exhibiting a cascade of currents and finite correlations between multiple lattice sites, where numerical simulations provide further understanding of the dynamics. Our observations showcase dynamical tunneling in momentum-space lattices and provide prospects to realize dynamical gauge fields in driven-dissipative settings.
We study the Atomtronics Quantum Interference Device employing a semiclassical perspective. We consider an $M$ site ring that is described by the Bose-Hubbard Hamiltonian. Coherent Rabi oscillations in the flow of the current are feasible, with an enhanced frequency due to to chaos-assisted tunneling. We highlight the consequences of introducing a weak-link into the circuit. In the latter context we clarify the phase-space considerations that are involved in setting up an effective systems plus bath description in terms of Josephson-Caldeira-Leggett Hamiltonian.
We study the spatial distributions of the spin and mass currents generated by a moving Gaussian magnetic obstacle in a symmetric, two-component Bose-Einstein condensate in two dimensions. We analytically describe the current distributions for a slow obstacle and show that the spin and the mass currents exhibit characteristic spatial structures resembling those of electromagnetic fields around dipole moments. When the obstacles velocity increases, we numerically observe that the flow pattern maintains its overall structure while the spin polarization induced by the obstacle is enhanced with an increased spin current. We investigate the critical velocity of the magnetic obstacle based on the local criterion of Landau energetic instability and find that it decreases almost linearly as the magnitude of the obstacles potential increases, which can be directly tested in current experiments.
We point out that the widely accepted condition g11g22<g122 for phase separation of a two-component Bose-Einstein condensate is insufficient if kinetic energy is taken into account, which competes against the intercomponent interaction and favors phase mixing. Here g11, g22, and g12 are the intra- and intercomponent interaction strengths, respectively. Taking a d-dimensional infinitely deep square well potential of width L as an example, a simple scaling analysis shows that if d=1 (d=3), phase separation will be suppressed as Lrightarrow0 (Lrightarrowinfty) whether the condition g11g22<g122 is satisfied or not. In the intermediate case of d=2, the width L is irrelevant but again phase separation can be partially or even completely suppressed even if g11g22<g122. Moreover, the miscibility-immiscibility transition is turned from a first-order one into a second-order one by the kinetic energy. All these results carry over to d-dimensional harmonic potentials, where the harmonic oscillator length {xi}ho plays the role of L. Our finding provides a scenario of controlling the miscibility-immiscibility transition of a two-component condensate by changing the confinement, instead of the conventional approach of changing the values of the gs.