No Arabic abstract
We report on the experimental realization and detection of dynamical currents in a spin-textured lattice in momentum space. Collective tunneling is implemented via cavity-assisted Raman scattering of photons by a spinor Bose-Einstein condensate into an optical cavity. The photon field inducing the tunneling processes is subject to cavity dissipation, resulting in effective directional dynamics in a non-Hermitian setting. We observe that the individual tunneling events are superradiant in nature and locally resolve them in the lattice by performing real-time, frequency-resolved measurements of the leaking cavity field. The results can be extended to a regime exhibiting a cascade of currents and finite correlations between multiple lattice sites, where numerical simulations provide further understanding of the dynamics. Our observations showcase dynamical tunneling in momentum-space lattices and provide prospects to realize dynamical gauge fields in driven-dissipative settings.
Quantum gases of light, as photons or polariton condensates in optical microcavities, are collective quantum systems enabling a tailoring of dissipation from e.g. cavity loss. This makes them a tool to study dissipative phases, an emerging subject in quantum manybody physics. Here we experimentally demonstrate a non-Hermitian phase transition of a photon Bose-Einstein condensate to a new dissipative phase, characterized by a biexponential decay of the condensates second-order coherence. The phase transition occurs due to the emergence of an exceptional point in the quantum gas. While Bose-Einstein condensation is usually connected to ordinary lasing by a smooth crossover, the observed phase transition separates the novel, biexponential phase from both lasing and an intermediate, oscillatory condensate regime. Our findings pave the way for studies of a wide class of dissipative quantum phases, for instance in topological or lattice systems.
Dissipation can serve as a powerful resource for controlling the behavior of open quantum systems.Recently there has been a surge of interest in the influence of dissipative coupling on large quantum systems and, more specifically, how these processes can influence band topology and phenomena like many-body localization. Here, we explore the engineering of local, tunable dissipation in so-called synthetic lattices, arrays of quantum states that are parametrically coupled in a fashion analogous to quantum tunneling. Considering the specific case of momentum-state lattices, we investigate two distinct mechanisms for engineering controlled loss: one relying on an explicit form of dissipation by spontaneous emission, and another relying on reversible coupling to a large reservoir of unoccupied states. We experimentally implement the latter and demonstrate the ability to tune the local loss rate over a large range. The introduction of controlled loss to the synthetic lattice toolbox promises to pave the way for studying the interplay of dissipation with topology, disorder, and interactions.
We introduce a Ramsey pulse scheme which extracts the non-Hermitian Hamiltonian associated to an arbitrary Lindblad dynamics. We propose a realted protocol to measure via interferometry a generalised Loschmidt echo of a generic state evolving in time with the non-Hermitian Hamiltonian itself, and we apply the scheme to a one-dimensional weakly interacting Bose gas coupled to a stochastic atomic impurity. The Loschmidt echo is mapped into a functional integral from which we calculate the long-time decohering dynamics at arbitrary impurity strengths. For strong dissipation we uncover the phenomenology of a quantum many-body Zeno effect: corrections to the decoherence exponent resulting from the impurity self-energy becomes purely imaginary, in contrast to the regime of small dissipation where they instead enhance the decay of quantum coherences. Our results illustrate the prospects for experiments employing Ramsey interferometry to study dissipative quantum impurities in condensed matter and cold atoms systems.
Linear response theory plays a prominent role in various fields of physics and provides us with extensive information about the thermodynamics and dynamics of quantum and classical systems. Here we develop a general theory for the linear response in non-Hermitian systems with non-unitary dynamics and derive a modified Kubo formula for the generalized susceptibility for arbitrary (Hermitian and non-Hermitian) system and perturbation. As an application, we evaluate the dynamical response of a non-Hermitian, one-dimensional Dirac model with imaginary and real masses, perturbed by a time-dependent electric field. The model has a rich phase diagram, and in particular, features a tachyon phase, where excitations travel faster than an effective speed of light. Surprisingly, we find that the dc conductivity of tachyons is finite, and the optical sum rule is exactly satisfied for all masses. Our results highlight the peculiar properties of the Kubo formula for non-Hermitian systems and are applicable for a large variety of settings.
We investigate the dynamical properties for non-Hermitian triple-well system with a loss in the middle well. When chemical potentials in two end wells are uniform and nonlinear interactions are neglected, there always exists a dark state, whose eigenenergy becomes zero, and the projections onto which do not change over time and the loss factor. The increasing of loss factor only makes the damping form from the oscillating decay to over-damping decay. However, when the nonlinear interaction is introduced, even interactions in the two end wells are also uniform, the projection of the dark state will be obviously diminished. Simultaneously the increasing of loss factor will also aggravate the loss. In this process the interaction in the middle well plays no role. When two chemical potentials or interactions in two end wells are not uniform all disappear with time. In addition, when we extend the triple-well system to a general (2n + 1)-well, the loss is reduced greatly by the factor 1=2n in the absence of the nonlinear interaction.