Do you want to publish a course? Click here

Controlling phase separation of a two-component Bose-Einstein condensate by confinement

137   0   0.0 ( 0 )
 Added by Jiang min Zhang
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We point out that the widely accepted condition g11g22<g122 for phase separation of a two-component Bose-Einstein condensate is insufficient if kinetic energy is taken into account, which competes against the intercomponent interaction and favors phase mixing. Here g11, g22, and g12 are the intra- and intercomponent interaction strengths, respectively. Taking a d-dimensional infinitely deep square well potential of width L as an example, a simple scaling analysis shows that if d=1 (d=3), phase separation will be suppressed as Lrightarrow0 (Lrightarrowinfty) whether the condition g11g22<g122 is satisfied or not. In the intermediate case of d=2, the width L is irrelevant but again phase separation can be partially or even completely suppressed even if g11g22<g122. Moreover, the miscibility-immiscibility transition is turned from a first-order one into a second-order one by the kinetic energy. All these results carry over to d-dimensional harmonic potentials, where the harmonic oscillator length {xi}ho plays the role of L. Our finding provides a scenario of controlling the miscibility-immiscibility transition of a two-component condensate by changing the confinement, instead of the conventional approach of changing the values of the gs.



rate research

Read More

94 - Zhen Li , Le-Man Kuang 2019
We propose a scheme to control quantum coherence of a two-component Bose-Einstein condensate (BEC) by a single impurity atom immersed in the BEC. We show that the single impurity atom can act as a single atom valve (SAV) to control quantum coherence of the two-component BEC. It is demonstrated that the SAV can realize the on-demand control over quantum coherence at an arbitrary time. Specially, it is found that the SAV can also control higher-order quantum coherence of two-component BEC. We investigate the long-time evolution of quantum coherence of the two-component BEC. It is indicated that the single impurity atom can induce collapse and revival phenomenon of quantum coherence of the two-component BEC. Collapse-revival configurations of quantum coherence can be manipulated by the initial-state parameters of the impurity atom and the impurity-BEC interaction strengths.
The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition between mixed and separated phases is fully characterised by a `miscibility parameter, based on the ratio of intra- to inter-species interaction strengths. Here we show, however, that this parameter is no longer the optimal one for trapped gases, for which the location of the phase boundary depends critically on atom numbers. We demonstrate how monitoring of damping rates and frequencies of dipole oscillations enables the experimental mapping of the phase diagram by numerical implementation of a fully self-consistent finite-temperature kinetic theory for binary condensates. The change in damping rate is explained in terms of surface oscillation in the immiscible regime, and counterflow instability in the miscible regime, with collisions becoming only important in the long time evolution.
132 - Ofir E. Alon 2018
The ground state of a Bose-Einstein condensate in a two-dimensional trap potential is analyzed numerically at the infinite-particle limit. It is shown that the anisotropy of the many-particle position variance along the $x$ and $y$ axes can be opposite when computed at the many-body and mean-field levels of theory. This is despite the system being $100%$ condensed, and the respective energies per particle and densities per particle to coincide.
We use collective oscillations of a two-component Bose-Einstein condensate (2CBEC) of Rb atoms prepared in the internal states $ket{1}equivket{F=1, m_F=-1}$ and $ket{2}equivket{F=2, m_F=1}$ for the precision measurement of the interspecies scattering length $a_{12}$ with a relative uncertainty of $1.6times 10^{-4}$. We show that in a cigar-shaped trap the three-dimensional (3D) dynamics of a component with a small relative population can be conveniently described by a one-dimensional (1D) Schr{o}dinger equation for an effective harmonic oscillator. The frequency of the collective oscillations is defined by the axial trap frequency and the ratio $a_{12}/a_{11}$, where $a_{11}$ is the intra-species scattering length of a highly populated component 1, and is largely decoupled from the scattering length $a_{22}$, the total atom number and loss terms. By fitting numerical simulations of the coupled Gross-Pitaevskii equations to the recorded temporal evolution of the axial width we obtain the value $a_{12}=98.006(16),a_0$, where $a_0$ is the Bohr radius. Our reported value is in a reasonable agreement with the theoretical prediction $a_{12}=98.13(10),a_0$ but deviates significantly from the previously measured value $a_{12}=97.66,a_0$ cite{Mertes07} which is commonly used in the characterisation of spin dynamics in degenerate Rb atoms. Using Ramsey interferometry of the 2CBEC we measure the scattering length $a_{22}=95.44(7),a_0$ which also deviates from the previously reported value $a_{22}=95.0,a_0$ cite{Mertes07}. We characterise two-body losses for the component 2 and obtain the loss coefficients ${gamma_{12}=1.51(18)times10^{-14} textrm{cm}^3/textrm{s}}$ and ${gamma_{22}=8.1(3)times10^{-14} textrm{cm}^3/textrm{s}}$.
We report on the observation of the confinement-induced collapse dynamics of a dipolar Bose-Einstein condensate (dBEC) in a one-dimensional optical lattice. We show that for a fixed interaction strength the collapse can be initiated in-trap by lowering the lattice depth below a critical value. Moreover, a stable dBEC in the lattice may become unstable during the time-of-flight dynamics upon release, due to the combined effect of the anisotropy of the dipolar interactions and inter-site coherence in the lattice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا