Do you want to publish a course? Click here

Chaos and two-level dynamics of the Atomtronic Quantum Interference Device

81   0   0.0 ( 0 )
 Added by Doron Cohen
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the Atomtronics Quantum Interference Device employing a semiclassical perspective. We consider an $M$ site ring that is described by the Bose-Hubbard Hamiltonian. Coherent Rabi oscillations in the flow of the current are feasible, with an enhanced frequency due to to chaos-assisted tunneling. We highlight the consequences of introducing a weak-link into the circuit. In the latter context we clarify the phase-space considerations that are involved in setting up an effective systems plus bath description in terms of Josephson-Caldeira-Leggett Hamiltonian.



rate research

Read More

119 - Cavan Stone 2010
This article is an attempt to provide a link between the quantum nonequilibrium dynamics of cold gases and fifty years of progress in the lowdimensional quantum chaos. We identify two atomic systems lying on the interface: two interacting atoms in a harmonic multimode waveguide and an interacting two-component Bose-Bose mixture in a double-well potential. In particular, we study the level spacing distribution, the wavefunction statistics, the eigenstate thermalization, and the ability to thermalize in a relaxation process as such.
Atomtronics is an emerging field which aims to manipulate ultracold atom moving in matter wave circuits for both fundamental studies in quantum science and technological applications. In this colloquium, we review recent progress in matter-wave circuitry and atomtronics-based quantum technology. After a short introduction to the basic physical principles and the key experimental techniques needed to realize atomtronic systems, we describe the physics of matter-wave in simple circuits such as ring traps and two-terminal systems. The main experimental observations and outstanding questions are discussed. Applications to a broad range of quantum technologies, from quantum sensing with atom interferometry to future quantum simulation and quantum computation architectures, are then presented.
Theoretical and experimental investigations of the interaction between spins and temperature gradients are vital for the development of spin caloritronics, and can dictate the design of future spintronics devices. In this work, we propose a two-terminal cold-atom simulator to study that interaction. The proposed quantum simulator consists of strongly interacting atoms that occupy two reservoirs connected by a one-dimensional link. The reservoirs are kept at different temperatures. We show the existence of a spin current in this system by studying the dynamics that follows a spin-flip of an atom in the link. We argue that the dynamics in the link can be described using an inhomogeneous Heisenberg chain whose couplings are defined by the local temperature. A temperature gradient accelerates the impurity in one direction more than in the other, leading to an overall spin current. Therefore, our study offers a way to simulate certain features of the spin Seebeck effect with cold atoms.
Atomtronics is an emerging interdisciplinary field that seeks new functionality by creating devices and circuits where ultra-cold atoms, often superfluids, play a role analogous to the electrons in electronics. Hysteresis is widely used in electronic circuits, e.g., it is routinely observed in superconducting circuits and is essential in rf-superconducting quantum interference devices [SQUIDs]. Furthermore, hysteresis is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity, and Josephson effects. Nevertheless, in spite of multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate (BEC). Here we demonstrate hysteresis in a quantized atomtronic circuit: a ring of superfluid BEC obstructed by a rotating weak link. We directly detect hysteresis between quantized circulation states, in contrast to superfluid liquid helium experiments that observed hysteresis directly in systems where the quantization of flow could not be observed and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices and indicate that dissipation plays an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits like memory, digital noise filters (e.g., Schmitt triggers), and magnetometers (e.g., SQUIDs).
Quantum magnetism describes the properties of many materials such as transition metal oxides and cuprate superconductors. One of its elementary processes is the propagation of spin excitations. Here we study the quantum dynamics of a deterministically created spin-impurity atom, as it propagates in a one-dimensional lattice system. We probe the full spatial probability distribution of the impurity at different times using single-site-resolved imaging of bosonic atoms in an optical lattice. In the Mott-insulating regime, a post-selection of the data allows to reduce the effect of temperature, giving access to a space- and time-resolved measurement of the quantum-coherent propagation of a magnetic excitation in the Heisenberg model. Extending the study to the baths superfluid regime, we determine quantitatively how the bath strongly affects the motion of the impurity. The experimental data shows a remarkable agreement with theoretical predictions allowing us to determine the effect of temperature on the coherence and velocity of impurity motion. Our results pave the way for a new approach to study quantum magnetism, mobile impurities in quantum fluids, and polarons in lattice systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا