No Arabic abstract
We consider the revenue maximization problem for an online retailer who plans to display a set of products differing in their prices and qualities and rank them in order. The consumers have random attention spans and view the products sequentially before purchasing a ``satisficing product or leaving the platform empty-handed when the attention span gets exhausted. Our framework extends the cascade model in two directions: the consumers have random attention spans instead of fixed ones and the firm maximizes revenues instead of clicking probabilities. We show a nested structure of the optimal product ranking as a function of the attention span when the attention span is fixed and design a $1/e$-approximation algorithm accordingly for the random attention spans. When the conditional purchase probabilities are not known and may depend on consumer and product features, we devise an online learning algorithm that achieves $tilde{mathcal{O}}(sqrt{T})$ regret relative to the approximation algorithm, despite of the censoring of information: the attention span of a customer who purchases an item is not observable. Numerical experiments demonstrate the outstanding performance of the approximation and online learning algorithms.
We consider the revenue maximization problem in social advertising, where a social network platform owner needs to select seed users for a group of advertisers, each with a payment budget, such that the total expected revenue that the owner gains from the advertisers by propagating their ads in the network is maximized. Previous studies on this problem show that it is intractable and present approximation algorithms. We revisit this problem from a fresh perspective and develop novel efficient approximation algorithms, both under the setting where an exact influence oracle is assumed and under one where this assumption is relaxed. Our approximation ratios significantly improve upon the previous ones. Furthermore, we empirically show, using extensive experiments on four datasets, that our algorithms considerably outperform the existing methods on both the solution quality and computation efficiency.
Most work in mechanism design assumes that buyers are risk neutral; some considers risk aversion arising due to a non-linear utility for money. Yet behavioral studies have established that real agents exhibit risk attitudes which cannot be captured by any expected utility model. We initiate the study of revenue-optimal mechanisms under buyer behavioral models beyond expected utility theory. We adopt a model from prospect theory which arose to explain these discrepancies and incorporates agents under-weighting uncertain outcomes. In our model, an event occurring with probability $x < 1$ is worth strictly less to the agent than $x$ times the value of the event when it occurs with certainty. In contrast to the risk-neutral setting, the optimal mechanism may be randomized and appears challenging to find, even for a single buyer and a single item for sale. Nevertheless, we give a characterization of the optimal mechanism which enables positive approximation results. In particular, we show that under a reasonable bounded-risk-aversion assumption, posted pricing obtains a constant approximation. Notably, this result is risk-robust in that it does not depend on the details of the buyers risk attitude. Finally, we examine a dynamic setting in which the buyer is uncertain about his future value. In contrast to positive results for a risk-neutral buyer, we show that the buyers risk aversion may prevent the seller from approximating the optimal revenue in a risk-robust manner.
We study mechanisms for selling a single item when buyers have private values for their outside options, which they forego by participating in the mechanism. This substantially changes the revenue maximization problem. For example, the seller can strictly benefit from selling lotteries already in the single-buyer setting. We bound the menu size and the sample complexity for the optimal single-buyer mechanism. We then show that posting a single price is in fact optimal under the assumption that either (1) the outside option value is independent of the item value, and the item value distribution has decreasing marginal revenue or monotone hazard rate; or (2) the outside option value is a concave function of the item value. Moreover, when there are multiple buyers, we show that sequential posted pricing guarantees a large fraction of the optimal revenue under similar conditions.
We present a polynomial-time algorithm that, given samples from the unknown valuation distribution of each bidder, learns an auction that approximately maximizes the auctioneers revenue in a variety of single-parameter auction environments including matroid environments, position environments, and the public project environment. The valuation distributions may be arbitrary bounded distributions (in particular, they may be irregular, and may differ for the various bidders), thus resolving a problem left open by previous papers. The analysis uses basic tools, is performed in its entirety in value-space, and simplifies the analysis of previously known results for special cases. Furthermore, the analysis extends to certain single-parameter auction environments where precise revenue maximization is known to be intractable, such as knapsack environments.
One of the ways of achieving improved capacity in mobile cellular networks is via network densification. Even though densification increases the capacity of the network, it also leads to increased energy consumption which can be curbed by dynamically switching off some base stations (BSs) during periods of low traffic. However, dynamic cell switching has the challenge of spectrum under-utilizationas the spectrum originally occupied by the BSs that are turned off remains dormant. This dormant spectrum can be leased by the primary network (PN) operators, who hold the license, to the secondary network (SN) operators who cannot afford to purchase the spectrum license. Thus enabling the PN to gain additional revenue from spectrum leasing as well as from electricity cost savings due to reduced energy consumption. Therefore, in this work, we propose a cell switching and spectrum leasing framework based on simulated annealing (SA) algorithm to maximize the revenue of the PN while respecting the quality-of-service constraints. The performance evaluation reveals that the proposed method is very close to optimal exhaustive search method with a significant reduction in the computation complexity.