Do you want to publish a course? Click here

Revenue Maximization through Cell Switching and Spectrum Leasing in 5G HetNets

199   0   0.0 ( 0 )
 Added by Attai Abubakar
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

One of the ways of achieving improved capacity in mobile cellular networks is via network densification. Even though densification increases the capacity of the network, it also leads to increased energy consumption which can be curbed by dynamically switching off some base stations (BSs) during periods of low traffic. However, dynamic cell switching has the challenge of spectrum under-utilizationas the spectrum originally occupied by the BSs that are turned off remains dormant. This dormant spectrum can be leased by the primary network (PN) operators, who hold the license, to the secondary network (SN) operators who cannot afford to purchase the spectrum license. Thus enabling the PN to gain additional revenue from spectrum leasing as well as from electricity cost savings due to reduced energy consumption. Therefore, in this work, we propose a cell switching and spectrum leasing framework based on simulated annealing (SA) algorithm to maximize the revenue of the PN while respecting the quality-of-service constraints. The performance evaluation reveals that the proposed method is very close to optimal exhaustive search method with a significant reduction in the computation complexity.



rate research

Read More

The evolution of conventional wireless communication networks to the fifth generation (5G) is driven by an explosive increase in the number of wireless mobile devices and services, as well as their demand for all-time and everywhere connectivity, high data rates, low latency, high energy-efficiency and improved quality of service. To address these challenges, 5G relies on key technologies, such as full duplex (FD), device-to-device (D2D) communications, and network densification. In this article, a heterogeneous networking architecture is envisioned, where cells of different sizes and radio access technologies coexist. Specifically, collaboration for spectrum access is explored for both FD- and cognitive-based approaches, and cooperation among devices is discussed in the context of the state-of-the-art D2D assisted communication paradigm. The presented cooperative framework is expected to advance the understandings of the critical technical issues towards dynamic spectrum management for 5G heterogeneous networks.
Ultra-dense deployments in 5G, the next generation of cellular networks, are an alternative to provide ultra-high throughput by bringing the users closer to the base stations. On the other hand, 5G deployments must not incur a large increase in energy consumption in order to keep them cost-effective and most importantly to reduce the carbon footprint of cellular networks. We propose a reinforcement learning cell switching algorithm, to minimize the energy consumption in ultra-dense deployments without compromising the quality of service (QoS) experienced by the users. In this regard, the proposed algorithm can intelligently learn which small cells (SCs) to turn off at any given time based on the traffic load of the SCs and the macro cell. To validate the idea, we used the open call detail record (CDR) data set from the city of Milan, Italy, and tested our algorithm against typical operational benchmark solutions. With the obtained results, we demonstrate exactly when and how the proposed algorithm can provide energy savings, and moreover how this happens without reducing QoS of users. Most importantly, we show that our solution has a very similar performance to the exhaustive search, with the advantage of being scalable and less complex.
168 - Ruisi He , Bo Ai , Zhangdui Zhong 2021
With the rapid development of railways, especially high-speed railways, there is an increasingly urgent demand for new wireless communication system for railways. Taking the mature 5G technology as an opportunity, 5G-railways (5G-R) have been widely regarded as a solution to meet the diversified demands of railway wireless communications. For the design, deployment and improvement of 5G-R networks, radio communication scenario classification plays an important role, affecting channel modeling and system performance evaluation. In this paper, a standardized radio communication scenario classification, including 18 scenarios, is proposed for 5G-R. This paper analyzes the differences of 5G-R scenarios compared with the traditional cellular networks and GSM-railways, according to 5G-R requirements and the unique physical environment and propagation characteristics. The proposed standardized scenario classification helps deepen the research of 5G-R and promote the development and application of the existing advanced technologies in railways.
Heterogeneous wireless networks with small-cell deployments in licensed and unlicensed spectrum bands are a promising approach for expanding wireless connectivity and service. As a result, wireless service providers (SPs) are adding small-cells to augment their existing macro-cell deployments. This added flexibility complicates network management, in particular, service pricing and spectrum allocations across macro- and small-cells. Further, these decisions depend on the degree of competition among SPs. Restrictions on shared spectrum access imposed by regulators, such as low power constraints that lead to small-cell deployments, along with the investment cost needed to add small cells to an existing network, also impact strategic decisions and market efficiency. If the revenue generated by small-cells does not cover the investment cost, then there will be no deployment even if it increases social welfare. We study the implications of such spectrum constraints and investment costs on resource allocation and pricing decisions by competitive SPs, along with the associated social welfare. Our results show that while the optimal resource allocation taking constraints and investment into account can be uniquely determined, adding those features with strategic SPs can have a substantial effect on the equilibrium market structure.
5G is regarded as a revolutionary mobile network, which is expected to satisfy a vast number of novel services, ranging from remote health care to smart cities. However, heterogeneous Quality of Service (QoS) requirements of different services and limited spectrum make the radio resource allocation a challenging problem in 5G. In this paper, we propose a multi-agent reinforcement learning (MARL) method for radio resource slicing in 5G. We model each slice as an intelligent agent that competes for limited radio resources, and the correlated Q-learning is applied for inter-slice resource block (RB) allocation. The proposed correlated Q-learning based interslice RB allocation (COQRA) scheme is compared with Nash Q-learning (NQL), Latency-Reliability-Throughput Q-learning (LRTQ) methods, and the priority proportional fairness (PPF) algorithm. Our simulation results show that the proposed COQRA achieves 32.4% lower latency and 6.3% higher throughput when compared with LRTQ, and 5.8% lower latency and 5.9% higher throughput than NQL. Significantly higher throughput and lower packet drop rate (PDR) is observed in comparison to PPF.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا