Do you want to publish a course? Click here

Revenue Maximization with an Uncertainty-Averse Buyer

223   0   0.0 ( 0 )
 Added by J. Benjamin Miller
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Most work in mechanism design assumes that buyers are risk neutral; some considers risk aversion arising due to a non-linear utility for money. Yet behavioral studies have established that real agents exhibit risk attitudes which cannot be captured by any expected utility model. We initiate the study of revenue-optimal mechanisms under buyer behavioral models beyond expected utility theory. We adopt a model from prospect theory which arose to explain these discrepancies and incorporates agents under-weighting uncertain outcomes. In our model, an event occurring with probability $x < 1$ is worth strictly less to the agent than $x$ times the value of the event when it occurs with certainty. In contrast to the risk-neutral setting, the optimal mechanism may be randomized and appears challenging to find, even for a single buyer and a single item for sale. Nevertheless, we give a characterization of the optimal mechanism which enables positive approximation results. In particular, we show that under a reasonable bounded-risk-aversion assumption, posted pricing obtains a constant approximation. Notably, this result is risk-robust in that it does not depend on the details of the buyers risk attitude. Finally, we examine a dynamic setting in which the buyer is uncertain about his future value. In contrast to positive results for a risk-neutral buyer, we show that the buyers risk aversion may prevent the seller from approximating the optimal revenue in a risk-robust manner.



rate research

Read More

We study mechanisms for selling a single item when buyers have private values for their outside options, which they forego by participating in the mechanism. This substantially changes the revenue maximization problem. For example, the seller can strictly benefit from selling lotteries already in the single-buyer setting. We bound the menu size and the sample complexity for the optimal single-buyer mechanism. We then show that posting a single price is in fact optimal under the assumption that either (1) the outside option value is independent of the item value, and the item value distribution has decreasing marginal revenue or monotone hazard rate; or (2) the outside option value is a concave function of the item value. Moreover, when there are multiple buyers, we show that sequential posted pricing guarantees a large fraction of the optimal revenue under similar conditions.
We present a polynomial-time algorithm that, given samples from the unknown valuation distribution of each bidder, learns an auction that approximately maximizes the auctioneers revenue in a variety of single-parameter auction environments including matroid environments, position environments, and the public project environment. The valuation distributions may be arbitrary bounded distributions (in particular, they may be irregular, and may differ for the various bidders), thus resolving a problem left open by previous papers. The analysis uses basic tools, is performed in its entirety in value-space, and simplifies the analysis of previously known results for special cases. Furthermore, the analysis extends to certain single-parameter auction environments where precise revenue maximization is known to be intractable, such as knapsack environments.
We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of $n$ additive bidders whose values for $m$ heterogeneous items are drawn independently. For any such instance and any $varepsilon>0$, we show that it is possible to learn an $varepsilon$-Bayesian Incentive Compatible auction whose expected revenue is within $varepsilon$ of the optimal $varepsilon$-BIC auction from only polynomially many samples. Our fully nonparametric approach is based on ideas that hold quite generally, and completely sidestep the difficulty of characterizing optimal (or near-optimal) auctions for these settings. Therefore, our results easily extend to general multi-dimensional settings, including valuations that are not necessarily even subadditive, and arbitrary allocation constraints. For the cases of a single bidder and many goods, or a single parameter (good) and many bidders, our analysis yields exact incentive compatibility (and for the latter also computational efficiency). Although the single-parameter case is already well-understood, our corollary for this case extends slightly the state-of-the-art.
We study revenue maximization by deterministic mechanisms for the simplest case for which Myersons characterization does not hold: a single seller selling two items, with independently distributed values, to a single additive buyer. We prove that optimal mechanisms are submodular and hence monotone. Furthermore, we show that in the IID case, optimal mechanisms are symmetric. Our characterizations are surprisingly non-trivial, and we show that they fail to extend in several natural ways, e.g. for correlated distributions or more than two items. In particular, this shows that the optimality of symmetric mechanisms does not follow from the symmetry of the IID distribution.
A patient seller aims to sell a good to an impatient buyer (i.e., one who discounts utility over time). The buyer will remain in the market for a period of time $T$, and her private value is drawn from a publicly known distribution. What is the revenue-optimal pricing-curve (sequence of (price, time) pairs) for the seller? Is randomization of help here? Is the revenue-optimal pricing-curve computable in polynomial time? We answer these questions in this paper. We give an efficient algorithm for computing the revenue-optimal pricing curve. We show that pricing curves, that post a price at each point of time and let the buyer pick her utility maximizing time to buy, are revenue-optimal among a much broader class of sequential lottery mechanisms: namely, mechanisms that allow the seller to post a menu of lotteries at each point of time cannot get any higher revenue than pricing curves. We also show that the even broader class of mechanisms that allow the menu of lotteries to be adaptively set, can earn strictly higher revenue than that of pricing curves, and the revenue gap can be as big as the support size of the buyers value distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا