Do you want to publish a course? Click here

Majorana Zero Modes in Cylindrical Semiconductor Quantum Wire

89   0   0.0 ( 0 )
 Added by Chao Lei
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study Majorana zero modes properties in cylindrical cross-section semiconductor quantum wires based on the $k cdot p$ theory and a discretized lattice model. Within this model, the influence of disorder potentials in the wire and amplitude and phase fluctuations of the superconducting order-parameter are discussed. We find that for typical wire geometries, pairing potentials, and spin-orbit coupling strengths, coupling between quasi-one-dimensional sub-bands is weak, low-energy quasiparticles near the Fermi energy are nearly completely spin-polarized, and the number of electrons in the active sub-bands of topological states is small.



rate research

Read More

We show that partially separated Andreev bound states (ps-ABSs), comprised of pairs of overlapping Majorana bound states (MBSs) emerging in quantum dot-semiconductor-superconductor heterostructures, produce robust zero bias conductance plateaus in end-of-wire charge tunneling experiments. These plateaus remain quantized at $2e^2/h$ over large ranges of experimental control parameters. In light of recent experiments reporting the observation of robust $2e^2/h$-quantized conductance plateaus in local charge tunneling experiments, we perform extensive numerical calculations to explicitly show that such quantized conductance plateaus, which are obtained by varying control parameters such as the tunnel barrier height, the super gate potential, and the applied magnetic field, can arise as a result of the existence of ps-ABSs. Because ps-ABSs can form rather generically in the topologically trivial regime, even in the absence of disorder, our results suggest that the observation of a robust quantized conductance plateau does not represent sufficient evidence to demonstrate the existence of non-Abelian topologically-protected Majorana zero modes localized at the opposite ends of a wire.
117 - Haining Pan , S. Das Sarma 2020
Majorana zero modes in a superconductor-semiconductor nanowire have been extensively studied during the past decade. Disorder remains a serious problem, preventing the definitive observation of topological Majorana bound states. Thus, it is worthwhile to revisit the simple model, the Kitaev chain, and study the effects of weak and strong disorder on the Kitaev chain. By comparing the role of disorder in a Kitaev chain with that in a nanowire, we find that disorder affects both systems but in a nonuniversal manner. In general, disorder has a much stronger effect on the nanowire than the Kitaev chain, particularly for weak to intermediate disorder. For strong disorder, both the Kitaev chain and nanowire manifest random featureless behavior due to universal Anderson localization. Only the vanishing and strong disorder regimes are thus universal, manifesting respectively topological superconductivity and Anderson localization, but the experimentally relevant intermediate disorder regime is nonuniversal with the details dependent on the disorder realization in the system.
Realizing topological superconductivity and Majorana zero modes in the laboratory is one of the major goals in condensed matter physics. We review the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals for topological superconductivity. Material science progress and robust signatures of Majorana zero modes in recent experiments are discussed. After a brief introduction to the subject, we outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation in these systems.
We propose an alternative route to engineer Majorana zero modes (MZMs), which relies on inducing shift or spin vortex defects in magnetic textures which microscopically coexist or are in proximity to a superconductor. The present idea applies to a variety of superconducting materials and hybrid structures, irrespectively of their spin-singlet, -triplet, or mixed type of pairing, as long as their bulk energy spectrum contains robust point nodes. Our mechanism provides a new framework to understand the recent observations of pairs of MZMs in superconductor - magnetic adatom systems. Moreover, it can inspire the experimental development of new platforms, consisting of nanowires in proximity to conventional superconductors with strong Rashba spin-orbit coupling.
Majorana fermions (MFs) are predicted to occur as zero-energy bound states in semiconductor nanowire-superconductor structures. However, in the presence of disorder or smooth confining potentials, these structures can also host non-topological nearly-zero energy states. Here, we demonstrate that the MFs and the nearly-zero topologically-trivial states have different characteristic signatures in a tunneling conductance measurement, which allows to clearly discriminate between them. We also show that low-energy non-topological states can strongly hybridize with metallic states from the leads, which generates the smooth background that characterizes the soft superconducting gap measured in tunneling experiments and produces an additional decoherence mechanism for the Majorana mode. Our results pave the way for the conclusive identification of MFs in a solid state system and provide directions for minimizing quantum decoherence in Majorana wires.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا