No Arabic abstract
We show that partially separated Andreev bound states (ps-ABSs), comprised of pairs of overlapping Majorana bound states (MBSs) emerging in quantum dot-semiconductor-superconductor heterostructures, produce robust zero bias conductance plateaus in end-of-wire charge tunneling experiments. These plateaus remain quantized at $2e^2/h$ over large ranges of experimental control parameters. In light of recent experiments reporting the observation of robust $2e^2/h$-quantized conductance plateaus in local charge tunneling experiments, we perform extensive numerical calculations to explicitly show that such quantized conductance plateaus, which are obtained by varying control parameters such as the tunnel barrier height, the super gate potential, and the applied magnetic field, can arise as a result of the existence of ps-ABSs. Because ps-ABSs can form rather generically in the topologically trivial regime, even in the absence of disorder, our results suggest that the observation of a robust quantized conductance plateau does not represent sufficient evidence to demonstrate the existence of non-Abelian topologically-protected Majorana zero modes localized at the opposite ends of a wire.
Realizing topological superconductivity and Majorana zero modes in the laboratory is one of the major goals in condensed matter physics. We review the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals for topological superconductivity. Material science progress and robust signatures of Majorana zero modes in recent experiments are discussed. After a brief introduction to the subject, we outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation in these systems.
Motivated by a recent experimental report[1] claiming the likely observation of the Majorana mode in a semiconductor-superconductor hybrid structure[2,3,4,5], we study theoretically the dependence of the zero bias conductance peak associated with the zero-energy Majorana mode in the topological superconducting phase as a function of temperature, tunnel barrier potential, and a magnetic field tilted from the direction of the wire for realistic wires of finite lengths. We find that higher temperatures and tunnel barriers as well as a large magnetic field in the direction transverse to the wire length could very strongly suppress the zero-bias conductance peak as observed in Ref.[1]. We also show that a strong magnetic field along the wire could eventually lead to the splitting of the zero bias peak into a doublet with the doublet energy splitting oscillating as a function of increasing magnetic field. Our results based on the standard theory of topological superconductivity in a semiconductor hybrid structure in the presence of proximity-induced superconductivity, spin-orbit coupling, and Zeeman splitting show that the recently reported experimental data are generally consistent with the existing theory that led to the predictions for the existence of the Majorana modes in the semiconductor hybrid structures in spite of some apparent anomalies in the experimental observations at first sight. We also make several concrete new predictions for future observations regarding Majorana splitting in finite wires used in the experiments.
We report an experimental study of the scaling of zero-bias conductance peaks compatible with Majorana zero modes as a function of magnetic field, tunnel coupling, and temperature in one-dimensional structures fabricated from an epitaxial semiconductor-superconductor heterostructure. Results are consistent with theory, including a peak conductance that is proportional to tunnel coupling, saturates at $2e^2/h$, decreases as expected with field-dependent gap, and collapses onto a simple scaling function in the dimensionless ratio of temperature and tunnel coupling.
Conductance at zero source-drain voltage bias in InSb nanowire/NbTiN superconductor devices exhibits peaks that are close to a quantized value of $2e^2/h$. The nearly quantized resonances evolve in the tunnel barrier strength, magnetic field and magnetic field orientation in a way consistent with Majorana zero modes. Our devices feature two tunnel probes on both ends of the nanowire separated by a 400 nm nanowire segment covered by the superconductor. We only find nearly quantized zero bias peaks localized to one end of the nanowire, while conductance dips are observed for the same parameters on the other end. This undermines the Majorana explanation as Majorana modes must come in pairs. We do identify states delocalized from end to end near zero magnetic field and at higher electron density, which is not in the basic Majorana regime. We lay out procedures for assessing the nonlocality of subgap wavefunctions and provide a classification of nanowire bound states based on their localization.
We study Majorana zero modes properties in cylindrical cross-section semiconductor quantum wires based on the $k cdot p$ theory and a discretized lattice model. Within this model, the influence of disorder potentials in the wire and amplitude and phase fluctuations of the superconducting order-parameter are discussed. We find that for typical wire geometries, pairing potentials, and spin-orbit coupling strengths, coupling between quasi-one-dimensional sub-bands is weak, low-energy quasiparticles near the Fermi energy are nearly completely spin-polarized, and the number of electrons in the active sub-bands of topological states is small.