No Arabic abstract
Majorana fermions (MFs) are predicted to occur as zero-energy bound states in semiconductor nanowire-superconductor structures. However, in the presence of disorder or smooth confining potentials, these structures can also host non-topological nearly-zero energy states. Here, we demonstrate that the MFs and the nearly-zero topologically-trivial states have different characteristic signatures in a tunneling conductance measurement, which allows to clearly discriminate between them. We also show that low-energy non-topological states can strongly hybridize with metallic states from the leads, which generates the smooth background that characterizes the soft superconducting gap measured in tunneling experiments and produces an additional decoherence mechanism for the Majorana mode. Our results pave the way for the conclusive identification of MFs in a solid state system and provide directions for minimizing quantum decoherence in Majorana wires.
We study Majorana zero modes properties in cylindrical cross-section semiconductor quantum wires based on the $k cdot p$ theory and a discretized lattice model. Within this model, the influence of disorder potentials in the wire and amplitude and phase fluctuations of the superconducting order-parameter are discussed. We find that for typical wire geometries, pairing potentials, and spin-orbit coupling strengths, coupling between quasi-one-dimensional sub-bands is weak, low-energy quasiparticles near the Fermi energy are nearly completely spin-polarized, and the number of electrons in the active sub-bands of topological states is small.
Motivated by a recent experimental report[1] claiming the likely observation of the Majorana mode in a semiconductor-superconductor hybrid structure[2,3,4,5], we study theoretically the dependence of the zero bias conductance peak associated with the zero-energy Majorana mode in the topological superconducting phase as a function of temperature, tunnel barrier potential, and a magnetic field tilted from the direction of the wire for realistic wires of finite lengths. We find that higher temperatures and tunnel barriers as well as a large magnetic field in the direction transverse to the wire length could very strongly suppress the zero-bias conductance peak as observed in Ref.[1]. We also show that a strong magnetic field along the wire could eventually lead to the splitting of the zero bias peak into a doublet with the doublet energy splitting oscillating as a function of increasing magnetic field. Our results based on the standard theory of topological superconductivity in a semiconductor hybrid structure in the presence of proximity-induced superconductivity, spin-orbit coupling, and Zeeman splitting show that the recently reported experimental data are generally consistent with the existing theory that led to the predictions for the existence of the Majorana modes in the semiconductor hybrid structures in spite of some apparent anomalies in the experimental observations at first sight. We also make several concrete new predictions for future observations regarding Majorana splitting in finite wires used in the experiments.
We study the proximity effect in a topological nanowire tunnel coupled to an s-wave superconducting substrate. We use a general Greens function approach that allows us to study the evolution of the Andreev bound states in the wire into Majorana fermions. We show that the strength of the tunnel coupling induces a topological transition in which the Majorana fermionic states can be destroyed when the coupling is very strong. Moreover, we provide a phenomenologial study of the effects of disorder in the superconductor on the formation of Majorana fermions. We note a non-trivial effect of a quasiparticle broadening term which can take the wire from a topological into a non-topological phase in certain ranges of parameters. Our results have also direct consequences for a nanowire coupled to an inhomogenous superconductor.
Hybrid system composed by a semiconducting nanowire with proximity-induced superconductivity and a quantum dot at the end working as spectrometer was recently used to quantify the so-called degree of Majorana nonlocality [Deng et al., Phys.Rev.B, 98, 085125 (2018)]. Here we demonstrate that spin-resolved density of states of the dot responsible for zero-bias conductance peak strongly depends on the separation between the Majorana bound states (MBSs) and their relative couplings with the dot and investigate how the charging energy affects the spectrum of the system in the distinct scenarios of Majorana nonlocality (topological quality). Our findings suggest that spin-resolved spectroscopy of the local density of states of the dot can be used as a powerful tool for discriminating between different scenarios of the emergence of zero-bias conductance peak.
One-dimensional lattice with strong spin-orbit interactions (SOI) and Zeeman magnetic field is shown to lead to the formation of a helical charge-density wave (CDW) state near half-filling. Interplay of the magnetic field, SOI constants and the CDW gap seems to support Majorana bound states under appropriate value of the external parameters. Explicit calculation of the quasi-particles wave functions supports a formation of the localized zero-energy state, bounded to the sample end-points. Symmetry classification of the system is provided. Relative value of the density of states shows a precise zero-energy peak at the center of the band in the non-trivial topological regime.