Do you want to publish a course? Click here

Majorana Zero Modes in Magnetic Texture Vortices

338   0   0.0 ( 0 )
 Added by Panagiotis Kotetes
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose an alternative route to engineer Majorana zero modes (MZMs), which relies on inducing shift or spin vortex defects in magnetic textures which microscopically coexist or are in proximity to a superconductor. The present idea applies to a variety of superconducting materials and hybrid structures, irrespectively of their spin-singlet, -triplet, or mixed type of pairing, as long as their bulk energy spectrum contains robust point nodes. Our mechanism provides a new framework to understand the recent observations of pairs of MZMs in superconductor - magnetic adatom systems. Moreover, it can inspire the experimental development of new platforms, consisting of nanowires in proximity to conventional superconductors with strong Rashba spin-orbit coupling.



rate research

Read More

We identify three-dimensional higher-order superconductors characterized by the coexistence of one-dimensional Majorana hinge states and gapless surface sates. We show how such superconductors can be obtained starting from the model of a spinful quadrupolar semimetal with two orbitals and adding an s-wave superconducting pairing term. By considering all the possible s-wave pairings satisfying Fermi-Dirac statistics we obtain six different superconducting models. We find that for two of these models a flat-band of hinge Majorana states coexist with surface states, and that these models have a non-vanishing quadrupole-like topological invariant. Two of the other models, in the presence of a Zeeman term, exhibit helical and dispersive hinge states localized only at two of the four hinges. We find that these states are protected by combinations of rotation and mirror symmetries, and that the pair of corners exhibiting hinge states switches upon changing the sign of the Zeeman term. Furthermore, we show that these states can be localized to a single hinge with suitable perturbations. The remaining two models retain gapless bulk and surface states that spectroscopically obscure any possible hinge states.
The quantum evolution after a metallic lead is suddenly connected to an electron system contains information about the excitation spectrum of the combined system. We exploit this type of quantum quench to probe the presence of Majorana fermions at the ends of a topological superconducting wire. We obtain an algebraically decaying overlap (Loschmidt echo) ${cal L}(t)=| < psi(0) | psi(t) > |^2sim t^{-alpha}$ for large times after the quench, with a universal critical exponent $alpha$=1/4 that is found to be remarkably robust against details of the setup, such as interactions in the normal lead, the existence of additional lead channels or the presence of bound levels between the lead and the superconductor. As in recent quantum dot experiments, this exponent could be measured by optical absorption, offering a new signature of Majorana zero modes that is distinct from interferometry and tunneling spectroscopy.
186 - B. Seradjeh 2008
A real-space formulation is given for the recently discussed exciton condensate in a symmetrically biased graphene bilayer. We show that in the continuum limit an oddly-quantized vortex in this condensate binds exactly one zero mode per valley index of the bilayer. In the full lattice model the zero modes are split slightly due to intervalley mixing. We support these results by an exact numerical diagonalization of the lattice Hamiltonian. We also discuss the effect of the zero modes on the charge content of these vortices and deduce some of their interesting properties.
Proposals for realizing Majorana fermions in condensed matter systems typically rely on magnetic fields, which degrade the proximitizing superconductor and plague the Majoranas detection. We propose an alternative scheme to realize Majoranas based only on phase-biased superconductors. The phases (at least three of them) can be biased by a tiny magnetic field threading macroscopic superconducting loops, focusing and enhancing the effect of the magnetic field onto the junction, or by supercurrents. We show how a combination of the superconducting phase winding and the spin-orbit phase induced in closed loops (Aharonov-Casher effect) facilitates a topological superconducting state with Majorana end states. We demontrate this scheme by an analytically tractable model as well as simulations of realistic setups comprising only conventional materials.
It has been widely believed that half quantum vortices are indispensable to realize topological stable Majorana zero modes and non-Abelian anyons in spinful superconductors/superfluids. Contrary to this wisdom, we here demonstrate that integer quantum vortices in spinful superconductors can host topologically stable Majorana zero modes because of the mirror symmetry. The symmetry protected Majorana fermions may exhibit non-Abelian anyon braiding.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا