Do you want to publish a course? Click here

Accessing new magnetic regimes by tuning the ligand spin-orbit coupling in van der Waals magnets

91   0   0.0 ( 0 )
 Added by Faranak Bahrami
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Van der Waals (VdW) materials have opened new directions in the study of low dimensional magnetism. A largely unexplored arena is the intrinsic tuning of VdW magnets toward new ground-states. The chromium trihalides provided the first such example with a change of inter-layer magnetic coupling emerging upon exfoliation. Here, we take a different approach to engineer new ground-states, not by exfoliation, but by tuning the spin-orbit coupling (SOC) of the non-magnetic ligand atoms (Cl,Br,I). We synthesize a three-halide series, CrCl$_{3-x-y}$Br$_{x}$I$_{y}$, and map their magnetic properties as a function of Cl, Br, and I content. The resulting triangular phase diagrams unveil a frustrated regime near CrCl$_{3}$. First-principles calculations confirm that the frustration is driven by a competition between the chromium and halide SOCs. Furthermore, we reveal a field-induced change of inter-layer coupling in the bulk of CrCl$_{3-x-y}$Br$_{x}$I$_{y}$ crystals at the same field as in the exfoliation experiments.



rate research

Read More

225 - M. Blei , J.L. Lado , Q. Song 2020
Spontaneous magnetic order is a routine instance in three-dimensional (3D) materials but for a long time, it remained elusive in the 2D world. Recently, the first examples of (stand-alone) 2D van der Waals (vdW) crystals with magnetic order, either antiferromagnetic or ferromagnetic, have been reported. In this review, we describe the state of the art of the nascent field of magnetic 2D materials focusing on synthesis, engineering, and theory aspects. We also discuss challenges and some of the many different promising directions for future work.
In this article we review recent work on van der Waals (vdW) systems in which at least one of the components has strong spin-orbit coupling. We focus on a selection of vdW heterostructures to exemplify the type of interesting electronic properties that can arise in these systems. We first present a general effective model to describe the low energy electronic degrees of freedom in these systems. We apply the model to study the case of (vdW) systems formed by a graphene sheet and a topological insulator. We discuss the electronic transport properties of such systems and show how they exhibit much stronger spin-dependent transport effects than isolated topological insulators. We then consider vdW systems in which the layer with strong spin-orbit coupling is a monolayer transition metal dichalcogenide (TMD) and briefly discuss graphene-TMD systems. In the second part of the article we discuss the case in which the vdW system includes a superconducting layer in addition to the layer with strong spin-orbit coupling. We show in detail how these systems can be designed to realize odd-frequency superconducting pair correlations. Finally, we discuss twisted graphene-NbSe2 bilayer systems as an example in which the strength of the proximity-induced superconducting pairing in the normal layer, and its Ising character, can be tuned via the relative twist angle between the two layers forming the heterostructure.
Magnetic topological insulators (TI) provide an important material platform to explore quantum phenomena such as quantized anomalous Hall (QAH) effect and Majorana modes, etc. Their successful material realization is thus essential for our fundamental understanding and potential technical revolutions. By realizing a bulk van der Waals material MnBi4Te7 with alternating septuple [MnBi2Te4] and quintuple [Bi2Te3] layers, we show that it is ferromagnetic in plane but antiferromagnetic along the c axis with an out-of-plane saturation field of ~ 0.22 T at 2 K. Our angle-resolved photoemission spectroscopy measurements and first-principles calculations further demonstrate that MnBi4Te7 is a Z2 antiferromagnetic TI with two types of surface states associated with the [MnBi2Te4] or [Bi2Te3] termination, respectively. Additionally, its superlattice nature may make various heterostructures of [MnBi2Te4] and [Bi2Te3] layers possible by exfoliation. Therefore, the low saturation field and the superlattice nature of MnBi4Te7 make it an ideal system to investigate rich emergent phenomena.
Fe5-xGeTe2 is a van der Waals material with one of the highest reported bulk Curie temperatures, $T_C$ ~ 310K. In this study, theoretical calculations and experiments are utilized to demonstrate that the magnetic ground state is highly sensitive to local atomic arrangements and the interlayer stacking. Cobalt substitution is found to be an effective way to manipulate the magnetic properties while also increasing the ordering temperature. In particular, cobalt substitution up to 30% enhances $T_C$ and changes the magnetic anisotropy, while approximately 50% cobalt substitution yields an antiferromagnetic state. Single crystal x-ray diffraction evidences a structural change upon increasing the cobalt concentration, with a rhombohedral cell observed in the parent material and a primitive cell observed for ~46% cobalt content relative to iron. First principles calculations demonstrate that it is a combination of high cobalt content and the concomitant change to primitive layer stacking that produces antiferromagnetic order. These results illustrate the sensitivity of magnetism in Fe5-xGeTe2 to composition and structure, and emphasize the important role of structural order/disorder and layer stacking in cleavable magnetic materials.
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl, Br, I). Below Ts, a long-range ferromagnetic (FM) transition emerges at Tc ~ 50 K. The local moment of V in VI3 is close to the high-spin state V3+ ion (S = 1). Theoretical calculation suggests that VI3 may be a Mott insulator with the band gap of about 0.84 eV. In addition, VI3 has a relative small interlayer binding energy and can be exfoliated easily down to few layers experimentally. Therefore, VI3 is a candidate of two-dimensional FM semiconductor. It also provides a novel platform to explore 2D magnetism and vdW heterostructures in S = 1 system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا