Do you want to publish a course? Click here

A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling

106   0   0.0 ( 0 )
 Added by Chaowei Hu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic topological insulators (TI) provide an important material platform to explore quantum phenomena such as quantized anomalous Hall (QAH) effect and Majorana modes, etc. Their successful material realization is thus essential for our fundamental understanding and potential technical revolutions. By realizing a bulk van der Waals material MnBi4Te7 with alternating septuple [MnBi2Te4] and quintuple [Bi2Te3] layers, we show that it is ferromagnetic in plane but antiferromagnetic along the c axis with an out-of-plane saturation field of ~ 0.22 T at 2 K. Our angle-resolved photoemission spectroscopy measurements and first-principles calculations further demonstrate that MnBi4Te7 is a Z2 antiferromagnetic TI with two types of surface states associated with the [MnBi2Te4] or [Bi2Te3] termination, respectively. Additionally, its superlattice nature may make various heterostructures of [MnBi2Te4] and [Bi2Te3] layers possible by exfoliation. Therefore, the low saturation field and the superlattice nature of MnBi4Te7 make it an ideal system to investigate rich emergent phenomena.

rate research

Read More

324 - Junho Seo , Eun Su An , Taesu Park 2020
Antiferromagnetic (AFM) van der Waals (vdW) materials provide a novel platform for synthetic AFM spintronics, in which the spin-related functionalities are derived from manipulating spin configurations between the layers. Metallic vdW antiferromagnets are expected to have several advantages over the widely-studied insulating counterparts in switching and detecting the spin states through electrical currents but have been much less explored due to the lack of suitable materials. Here, utilizing the extreme sensitivity of the vdW interlayer magnetism to material composition, we report the itinerant antiferromagnetism in Co-doped Fe4GeTe2 with TN ~ 210 K, an order of magnitude increased as compared to other known AFM vdW metals. The resulting spin configurations and orientations are sensitively controlled by doping, magnetic field, temperature, and thickness, which are effectively read out by electrical conduction. These findings manifest strong merits of metallic vdW magnets with tunable interlayer exchange interaction and magnetic anisotropy, suitable for AFM spintronic applications.
Emergent cooperative motions of individual degrees of freedom, i.e. collective excitations, govern the low-energy response of system ground states under external stimulations and play essential roles for understanding many-body phenomena in low-dimensional materials. The hybridization of distinct collective modes provides a route towards coherent manipulation of coupled degrees of freedom and quantum phases. In magnets, strong coupling between collective spin and lattice excitations, i.e., magnons and phonons, can lead to coherent quasi-particle magnon polarons. Here, we report the direct observation of a series of terahertz magnon polarons in a layered zigzag antiferromagnet FePS3 via far-infrared (FIR) transmission measurements. The characteristic avoided-crossing behavior is clearly seen as the magnon-phonon detuning is continuously changed via Zeeman shift of the magnon mode. The coupling strength g is giant, achieving 120 GHz (0.5 meV), the largest value reported so far. Such a strong coupling leads to a large ratio of g to the resonance frequency (g/{omega}) of 4.5%, and a value of 29 in cooperativity (g^2/{gamma}_{ph}{gamma}_{mag}). Experimental results are well reproduced by first-principle calculations, where the strong coupling is identified to arise from phonon-modulated anisotropic magnetic interactions due to spin-orbit coupling. These findings establish FePS3 as an ideal testbed for exploring hybridization-induced topological magnonics in two dimensions and the coherent control of spin and lattice degrees of freedom in the terahertz regime.
We demonstrate a new method of designing 2D functional magnetic topological heterostructure (HS) by exploiting the vdw heterostructure (vdw-HS) through combining 2D magnet CrI$_3$ and 2D materials (Ge/Sb) to realize new 2D topological system with nonzero Chern number (C=1) and chiral edge state. The nontrivial topology originates primarily from the CrI$_3$ layer while the non-magnetic element induces the charge transfer process and proximity enhanced spin-orbit coupling. Due to these unique properties, our topological magnetic vdw-HS overcomes the weak magnetization via proximity effect in previous designs since the magnetization and topology coexist in the same magnetic layer. Specifically, our systems of bilayer CrI$_3$/Sb and trilayer CrI$_3$/Sb/CrI$_3$ exhibit different topological ground state ranging from antiferromagnetic topological crystalline insulator (C$_M$= 2) to a QAHE. These nontrivial topological transition is shown to be switchable in a trilayer configuration due to the magnetic switching from antiferromagnetism to ferromangetism in the presence an external perpendicular electric field with value as small as 0.05 eV/A. Thus our study proposes a realistic system to design switchable magnetic topological device with electric field.
Van der Waals (vdW) heterobilayers formed by two-dimensional (2D) transition metal dichalcogenides (TMDCs) created a promising platform for various electronic and optical properties. ab initio band results indicate that the band offset of type-II band alignment in TMDCs vdW heterobilayer could be tuned by introducing Janus WSSe monolayer, instead of an external electric field. On the basis of symmetry analysis, the allowed interlayer hopping channels of TMDCs vdW heterobilayer were determined, and a four-level kp model was developed to obtain the interlayer hopping. Results indicate that the interlayer coupling strength could be tuned by interlayer electric polarization featured by various band offsets. Moreover, the difference in the formation mechanism of interlayer valley excitons in different TMDCs vdW heterobilayers with various interlayer hopping strength was also clarified.
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl, Br, I). Below Ts, a long-range ferromagnetic (FM) transition emerges at Tc ~ 50 K. The local moment of V in VI3 is close to the high-spin state V3+ ion (S = 1). Theoretical calculation suggests that VI3 may be a Mott insulator with the band gap of about 0.84 eV. In addition, VI3 has a relative small interlayer binding energy and can be exfoliated easily down to few layers experimentally. Therefore, VI3 is a candidate of two-dimensional FM semiconductor. It also provides a novel platform to explore 2D magnetism and vdW heterostructures in S = 1 system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا