No Arabic abstract
Spontaneous magnetic order is a routine instance in three-dimensional (3D) materials but for a long time, it remained elusive in the 2D world. Recently, the first examples of (stand-alone) 2D van der Waals (vdW) crystals with magnetic order, either antiferromagnetic or ferromagnetic, have been reported. In this review, we describe the state of the art of the nascent field of magnetic 2D materials focusing on synthesis, engineering, and theory aspects. We also discuss challenges and some of the many different promising directions for future work.
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl, Br, I). Below Ts, a long-range ferromagnetic (FM) transition emerges at Tc ~ 50 K. The local moment of V in VI3 is close to the high-spin state V3+ ion (S = 1). Theoretical calculation suggests that VI3 may be a Mott insulator with the band gap of about 0.84 eV. In addition, VI3 has a relative small interlayer binding energy and can be exfoliated easily down to few layers experimentally. Therefore, VI3 is a candidate of two-dimensional FM semiconductor. It also provides a novel platform to explore 2D magnetism and vdW heterostructures in S = 1 system.
We have synthesized unique colloidal nanoplatelets of the ferromagnetic two-dimensional (2D) van der Waals material CrI3 and have characterized these nanoplatelets structurally, magnetically, and by magnetic circular dichroism spectroscopy. The isolated CrI3 nanoplatelets have lateral dimensions of ~25 nm and ensemble thicknesses of only ~4 nm, corresponding to just a few CrI3 monolayers. Magnetic and magneto-optical measurements demonstrate robust 2D ferromagnetic ordering in these nanoplatelets with Curie temperatures similar to those observed in bulk CrI3, despite the strong spatial confinement. These data also show magnetization steps akin to those observed in micron-sized few-layer 2D sheets and associated with concerted spin-reversal of individual CrI3 layers within few-layer van der Waals stacks. Similar data have also been obtained for CrBr3 and anion-alloyed Cr(I1-xBrx)3 nanoplatelets. These results represent the first example of laterally confined 2D van der Waals ferromagnets of any composition. The demonstration of robust ferromagnetism at nanometer lateral dimensions opens new doors for miniaturization in spintronics devices based on van der Waals ferromagnets.
Precision magnetometry is fundamental to the development of novel magnetic materials and devices. Recently, the nitrogen-vacancy (NV) center in diamond has emerged as a promising probe for static magnetism in 2D van der Waals materials, capable of quantitative imaging with nanoscale spatial resolution. However, the dynamic character of magnetism, crucial for understanding the magnetic phase transition and achieving technological applications, has rarely been experimentally accessible in single 2D crystals. Here, we coherently control the NV centers spin precession to achieve ultra-sensitive, quantitative ac susceptometry of a 2D ferromagnet. Combining dc hysteresis with ac susceptibility measurements varying temperature, field, and frequency, we illuminate the formation, mobility, and consolidation of magnetic domain walls in few-layer CrBr3. We show that domain wall mobility is enhanced in ultrathin CrBr3, with minimal decrease for excitation frequencies exceeding hundreds of kilohertz, and is influenced by the domain morphology and local pinning of the flake. Our technique extends NV magnetometry to the multi-functional ac and dc magnetic characterization of wide-ranging spintronic materials at the nanoscale.
The magnetic excitations in CoPS$_3$, a two-dimensional van der Waals (vdW) antiferromagnet with spin $S=3/2$ on a honeycomb lattice, has been measured using powder inelastic neutron scattering. Clear dispersive spin waves are observed with a large spin gap of ~13 meV. The magnon spectra were fitted using an $XXZ$-type $J_1-J_2-J_3$ Heisenberg Hamiltonian with a single-ion anisotropy assuming no magnetic exchange between the honeycomb layers. The best-fit parameters show ferromagnetic exchange $J_1=-2.08$ meV and $J_2=-0.26$ meV for the nearest and second-nearest neighbors and a sizeable antiferromagnetic exchange $J_3=4.21$ meV for the third-nearest neighbor with the strong easy-axis anisotropy $K=-2.06$ meV. The suitable fitting could only be achieved by the anisotropic $XXZ$-type Hamiltonian, in which the exchange interaction for the out-of-plane component is smaller than that for the in-plane one by a ratio $alpha=J_z/J_x=0.6$. Moreover, the absence of spin-orbit exciton around 30 meV indicates that Co$^{2+}$ ions in CoPS$_3$ have a $S=3/2$ state rather than a spin-orbital entangled $J_rm{eff}=1/2$ ground state. Our result directly shows that CoPS$_3$ is an experimental realization of the $XXZ$ model with a honeycomb lattice in 2D vdW magnets.
Van der Waals (VdW) materials have opened new directions in the study of low dimensional magnetism. A largely unexplored arena is the intrinsic tuning of VdW magnets toward new ground-states. The chromium trihalides provided the first such example with a change of inter-layer magnetic coupling emerging upon exfoliation. Here, we take a different approach to engineer new ground-states, not by exfoliation, but by tuning the spin-orbit coupling (SOC) of the non-magnetic ligand atoms (Cl,Br,I). We synthesize a three-halide series, CrCl$_{3-x-y}$Br$_{x}$I$_{y}$, and map their magnetic properties as a function of Cl, Br, and I content. The resulting triangular phase diagrams unveil a frustrated regime near CrCl$_{3}$. First-principles calculations confirm that the frustration is driven by a competition between the chromium and halide SOCs. Furthermore, we reveal a field-induced change of inter-layer coupling in the bulk of CrCl$_{3-x-y}$Br$_{x}$I$_{y}$ crystals at the same field as in the exfoliation experiments.