No Arabic abstract
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl, Br, I). Below Ts, a long-range ferromagnetic (FM) transition emerges at Tc ~ 50 K. The local moment of V in VI3 is close to the high-spin state V3+ ion (S = 1). Theoretical calculation suggests that VI3 may be a Mott insulator with the band gap of about 0.84 eV. In addition, VI3 has a relative small interlayer binding energy and can be exfoliated easily down to few layers experimentally. Therefore, VI3 is a candidate of two-dimensional FM semiconductor. It also provides a novel platform to explore 2D magnetism and vdW heterostructures in S = 1 system.
We present comprehensive measurements of the structural, magnetic and electronic properties of layered van-der-Waals ferromagnet VI$_3$ down to low temperatures. Despite belonging to a well studied family of transition metal trihalides, this material has received very little attention. We outline, from high-resolution powder x-ray diffraction measurements, a corrected room-temperature crystal structure to that previously proposed and uncover a structural transition at 79 K, also seen in the heat capacity. Magnetization measurements confirm VI$_3$ to be a hard ferromagnet (9.1 kOe coercive field at 2 K) with a high degree of anisotropy, and the pressure dependence of the magnetic properties provide evidence for the two-dimensional nature of the magnetic order. Optical and electrical transport measurements show this material to be an insulator with an optical band gap of 0.67 eV - the previous theoretical predictions of d-band metallicity then lead us to believe VI$_3$ to be a correlated Mott insulator. Our latest band structure calculations support this picture and show good agreement with the experimental data. We suggest VI$_3$ to host great potential in the thriving field of low-dimensional magnetism and functional materials, together with opportunities to study and make use of low-dimensional Mott physics.
Evolution of magnetism in single crystals of the van der Waals compound VI3 in external pressure up to 7.3 GPa studied by measuring magnetization and ac magnetic susceptibility is reported. Four magnetic phase transitions, at T1 = 54.5 K, T2 = 53 K, TC = 49.5 K, and TFM = 26 K, respectively have been observed at ambient pressure. The first two have been attributed to the onset of ferromagnetism in specific crystal-surface layers. The bulk ferromagnetism is characterized by the magnetic ordering transition at Curie temperature TC and the transition between two different ferromagnetic phases TFM, accompanied by a structure transition from monoclinic to triclinic symmetry upon cooling. The pressure effects on magnetic parameters were studied with three independent techniques. TC was found to be almost unaffected by pressures up to 0.6 GPa whereas TFM increases rapidly with increasing pressure and reaches TC at a triple point at ~ 0.85 GPa. At higher pressures, only one magnetic phase transition is observed moving to higher temperatures with increasing pressure to reach 99 K at 7.3 GPa. In contrast, the low-temperature bulk magnetization is dramatically reduced by applying pressure (by more than 50% at 2.5 GPa) suggesting a possible pressure-induced reduction of vanadium magnetic moment. We discussed these results in light of recent theoretical studies to analyze exchange interactions and provide how to increase the Curie temperature of VI3.
The discovery of two-dimensional (2D) systems hosting intrinsic long-range magnetic order represents a seminal addition to the rich physical landscape of van der Waals (vdW) materials. CrI3 has emerged as perhaps the most salient example, as the interdependence of crystalline structure and magnetic order, along with strong light-matter interactions provides a promising platform to explore the optical control of magnetic, vibrational, and charge degrees of freedom at the 2D limit. However, the fundamental question of how this relationship between structure and magnetism manifests on their intrinsic timescales has rarely been explored. Here, we use ultrafast optical spectroscopy to probe magnetic and vibrational dynamics in CrI3, revealing demagnetization dynamics governed by spin-flip scattering and remarkably, a strong transient exchange-mediated interaction between lattice vibrations and spin oscillations. The latter yields a coherent spin-coupled phonon mode that is highly sensitive to the helicity of the driving pulse in the magnetically ordered phase. Our results shed light on the nature of spin-lattice coupling in vdW magnets on ultrafast timescales and highlight their potential for applications requiring non-thermal, high-speed control of magnetism at the nanoscale.
Superconductor-ferromagnet (S-F) interfaces in two-dimensional (2D) heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals (vdW) crystals remains largely unexplored due to the challenge of making an atomically-sharp interface from their layered structures. Here, we build a vdW ferromagnetic Josephson junction (JJ) by inserting a few-layer ferromagnetic insulator Cr2Ge2Te6 into two layers of superconductor NbSe2. Owing to the remanent magnetic moment of the barrier, the critical current and the corresponding junction resistance exhibit a hysteretic and oscillatory behavior against in-plane magnetic fields, manifesting itself as a strong Josephson coupling state. Through the control of this hysteresis, we can effectively trace the magnetic properties of atomic Cr2Ge2Te6 in response to the external magnetic field. Also, we observe a central minimum of critical current in some thick JJ devices, evidencing the coexistence of 0 and {pi} phase coupling in the junction region. Our study paves the way to exploring the sensitive probes of weak magnetism and multifunctional building blocks for phase-related superconducting circuits with the use of vdW heterostructures.
Spontaneous magnetic order is a routine instance in three-dimensional (3D) materials but for a long time, it remained elusive in the 2D world. Recently, the first examples of (stand-alone) 2D van der Waals (vdW) crystals with magnetic order, either antiferromagnetic or ferromagnetic, have been reported. In this review, we describe the state of the art of the nascent field of magnetic 2D materials focusing on synthesis, engineering, and theory aspects. We also discuss challenges and some of the many different promising directions for future work.