Do you want to publish a course? Click here

A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation

94   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Traditionally, abnormal heart sound classification is framed as a three-stage process. The first stage involves segmenting the phonocardiogram to detect fundamental heart sounds; after which features are extracted and classification is performed. Some researchers in the field argue the segmentation step is an unwanted computational burden, whereas others embrace it as a prior step to feature extraction. When comparing accuracies achieved by studies that have segmented heart sounds before analysis with those who have overlooked that step, the question of whether to segment heart sounds before feature extraction is still open. In this study, we explicitly examine the importance of heart sound segmentation as a prior step for heart sound classification, and then seek to apply the obtained insights to propose a robust classifier for abnormal heart sound detection. Furthermore, recognizing the pressing need for explainable Artificial Intelligence (AI) models in the medical domain, we also unveil hidden representations learned by the classifier using model interpretation techniques. Experimental results demonstrate that the segmentation plays an essential role in abnormal heart sound classification. Our new classifier is also shown to be robust, stable and most importantly, explainable, with an accuracy of almost 100% on the widely used PhysioNet dataset.

rate research

Read More

Cardiovascular (CV) diseases are the leading cause of death in the world, and auscultation is typically an essential part of a cardiovascular examination. The ability to diagnose a patient based on their heart sounds is a rather difficult skill to master. Thus, many approaches for automated heart auscultation have been explored. However, most of the previously proposed methods involve a segmentation step, the performance of which drops significantly for high pulse rates or noisy signals. In this work, we propose a novel segmentation-free heart sound classification method. Specifically, we apply discrete wavelet transform to denoise the signal, followed by feature extraction and feature reduction. Then, Support Vector Machines and Deep Neural Networks are utilised for classification. On the PASCAL heart sound dataset our approach showed superior performance compared to others, achieving 81% and 96% precision on normal and murmur classes, respectively. In addition, for the first time, the data were further explored under a user-independent setting, where the proposed method achieved 92% and 86% precision on normal and murmur, demonstrating the potential of enabling automatic murmur detection for practical use.
Fake audio attack becomes a major threat to the speaker verification system. Although current detection approaches have achieved promising results on dataset-specific scenarios, they encounter difficulties on unseen spoofing data. Fine-tuning and retraining from scratch have been applied to incorporate new data. However, fine-tuning leads to performance degradation on previous data. Retraining takes a lot of time and computation resources. Besides, previous data are unavailable due to privacy in some situations. To solve the above problems, this paper proposes detecting fake without forgetting, a continual-learning-based method, to make the model learn new spoofing attacks incrementally. A knowledge distillation loss is introduced to loss function to preserve the memory of original model. Supposing the distribution of genuine voice is consistent among different scenarios, an extra embedding similarity loss is used as another constraint to further do a positive sample alignment. Experiments are conducted on the ASVspoof2019 dataset. The results show that our proposed method outperforms fine-tuning by the relative reduction of average equal error rate up to 81.62%.
We present an experimental investigation into the effectiveness of transfer learning and bottleneck feature extraction in detecting COVID-19 from audio recordings of cough, breath and speech. This type of screening is non-contact, does not require specialist medical expertise or laboratory facilities and can be deployed on inexpensive consumer hardware. We use datasets that contain recordings of coughing, sneezing, speech and other noises, but do not contain COVID-19 labels, to pre-train three deep neural networks: a CNN, an LSTM and a Resnet50. These pre-trained networks are subsequently either fine-tuned using smaller datasets of coughing with COVID-19 labels in the process of transfer learning, or are used as bottleneck feature extractors. Results show that a Resnet50 classifier trained by this transfer learning process delivers optimal or near-optimal performance across all datasets achieving areas under the receiver operating characteristic (ROC AUC) of 0.98, 0.94 and 0.92 respectively for all three sound classes (coughs, breaths and speech). This indicates that coughs carry the strongest COVID-19 signature, followed by breath and speech. Our results also show that applying transfer learning and extracting bottleneck features using the larger datasets without COVID-19 labels led not only to improve performance, but also to minimise the standard deviation of the classifier AUCs among the outer folds of the leave-$p$-out cross-validation, indicating better generalisation. We conclude that deep transfer learning and bottleneck feature extraction can improve COVID-19 cough, breath and speech audio classification, yielding automatic classifiers with higher accuracy.
90 - Rong Gong , Xavier Serra 2018
In this paper, we propose an efficient and reproducible deep learning model for musical onset detection (MOD). We first review the state-of-the-art deep learning models for MOD, and identify their shortcomings and challenges: (i) the lack of hyper-parameter tuning details, (ii) the non-availability of code for training models on other datasets, and (iii) ignoring the network capability when comparing different architectures. Taking the above issues into account, we experiment with seven deep learning architectures. The most efficient one achieves equivalent performance to our implementation of the state-of-the-art architecture. However, it has only 28.3% of the total number of trainable parameters compared to the state-of-the-art. Our experiments are conducted using two different datasets: one mainly consists of instrumental music excerpts, and another developed by ourselves includes only solo singing voice excerpts. Further, inter-dataset transfer learning experiments are conducted. The results show that the model pre-trained on one dataset fails to detect onsets on another dataset, which denotes the importance of providing the implementation code to enable re-training the model for a different dataset. Datasets, code and a Jupyter notebook running on Google Colab are publicly available to make this research understandable and easy to reproduce.
Various incremental learning (IL) approaches have been proposed to help deep learning models learn new tasks/classes continuously without forgetting what was learned previously (i.e., avoid catastrophic forgetting). With the growing number of deployed audio sensing applications that need to dynamically incorporate new tasks and changing input distribution from users, the ability of IL on-device becomes essential for both efficiency and user privacy. However, prior works suffer from high computational costs and storage demands which hinders the deployment of IL on-device. In this work, to overcome these limitations, we develop an end-to-end and on-device IL framework, FastICARL, that incorporates an exemplar-based IL and quantization in the context of audio-based applications. We first employ k-nearest-neighbor to reduce the latency of IL. Then, we jointly utilize a quantization technique to decrease the storage requirements of IL. We implement FastICARL on two types of mobile devices and demonstrate that FastICARL remarkably decreases the IL time up to 78-92% and the storage requirements by 2-4 times without sacrificing its performance. FastICARL enables complete on-device IL, ensuring user privacy as the user data does not need to leave the device.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا