No Arabic abstract
Asking questions is one of the most crucial pedagogical techniques used by teachers in class. It not only offers open-ended discussions between teachers and students to exchange ideas but also provokes deeper student thought and critical analysis. Providing teachers with such pedagogical feedback will remarkably help teachers improve their overall teaching quality over time in classrooms. Therefore, in this work, we build an end-to-end neural framework that automatically detects questions from teachers audio recordings. Compared with traditional methods, our approach not only avoids cumbersome feature engineering, but also adapts to the task of multi-class question detection in real education scenarios. By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions. We conducted extensive experiments on the question detection tasks in a real-world online classroom dataset and the results demonstrate the superiority of our model in terms of various evaluation metrics.
In this work, we study computational approaches to detect online dialogic instructions, which are widely used to help students understand learning materials, and build effective study habits. This task is rather challenging due to the widely-varying quality and pedagogical styles of dialogic instructions. To address these challenges, we utilize pre-trained language models, and propose a multi-task paradigm which enhances the ability to distinguish instances of different classes by enlarging the margin between categories via contrastive loss. Furthermore, we design a strategy to fully exploit the misclassified examples during the training stage. Extensive experiments on a real-world online educational data set demonstrate that our approach achieves superior performance compared to representative baselines. To encourage reproducible results, we make our implementation online available at url{https://github.com/AIED2021/multitask-dialogic-instruction}.
This paper explores the task of answer-aware questions generation. Based on the attention-based pointer generator model, we propose to incorporate an auxiliary task of language modeling to help question generation in a hierarchical multi-task learning structure. Our joint-learning model enables the encoder to learn a better representation of the input sequence, which will guide the decoder to generate more coherent and fluent questions. On both SQuAD and MARCO datasets, our multi-task learning model boosts the performance, achieving state-of-the-art results. Moreover, human evaluation further proves the high quality of our generated questions.
We present methods for multi-task learning that take advantage of natural groupings of related tasks. Task groups may be defined along known properties of the tasks, such as task domain or language. Such task groups represent supervised information at the inter-task level and can be encoded into the model. We investigate two variants of neural network architectures that accomplish this, learning different feature spaces at the levels of individual tasks, task groups, as well as the universe of all tasks: (1) parallel architectures encode each input simultaneously into feature spaces at different levels; (2) serial architectures encode each input successively into feature spaces at different levels in the task hierarchy. We demonstrate the methods on natural language understanding (NLU) tasks, where a grouping of tasks into different task domains leads to improved performance on ATIS, Snips, and a large inhouse dataset.
Approaches to Grounded Language Learning typically focus on a single task-based final performance measure that may not depend on desirable properties of the learned hidden representations, such as their ability to predict salient attributes or to generalise to unseen situations. To remedy this, we present GROLLA, an evaluation framework for Grounded Language Learning with Attributes with three sub-tasks: 1) Goal-oriented evaluation; 2) Object attribute prediction evaluation; and 3) Zero-shot evaluation. We also propose a new dataset CompGuessWhat?! as an instance of this framework for evaluating the quality of learned neural representations, in particular concerning attribute grounding. To this end, we extend the original GuessWhat?! dataset by including a semantic layer on top of the perceptual one. Specifically, we enrich the VisualGenome scene graphs associated with the GuessWhat?! images with abstract and situated attributes. By using diagnostic classifiers, we show that current models learn representations that are not expressive enough to encode object attributes (average F1 of 44.27). In addition, they do not learn strategies nor representations that are robust enough to perform well when novel scenes or objects are involved in gameplay (zero-shot best accuracy 50.06%).
Question Answering (QA) systems are used to provide proper responses to users questions automatically. Sentence matching is an essential task in the QA systems and is usually reformulated as a Paraphrase Identification (PI) problem. Given a question, the aim of the task is to find the most similar question from a QA knowledge base. In this paper, we propose a Multi-task Sentence Encoding Model (MSEM) for the PI problem, wherein a connected graph is employed to depict the relation between sentences, and a multi-task learning model is applied to address both the sentence matching and sentence intent classification problem. In addition, we implement a general semantic retrieval framework that combines our proposed model and the Approximate Nearest Neighbor (ANN) technology, which enables us to find the most similar question from all available candidates very quickly during online serving. The experiments show the superiority of our proposed method as compared with the existing sentence matching models.