No Arabic abstract
Question Answering (QA) systems are used to provide proper responses to users questions automatically. Sentence matching is an essential task in the QA systems and is usually reformulated as a Paraphrase Identification (PI) problem. Given a question, the aim of the task is to find the most similar question from a QA knowledge base. In this paper, we propose a Multi-task Sentence Encoding Model (MSEM) for the PI problem, wherein a connected graph is employed to depict the relation between sentences, and a multi-task learning model is applied to address both the sentence matching and sentence intent classification problem. In addition, we implement a general semantic retrieval framework that combines our proposed model and the Approximate Nearest Neighbor (ANN) technology, which enables us to find the most similar question from all available candidates very quickly during online serving. The experiments show the superiority of our proposed method as compared with the existing sentence matching models.
Text-based Question Generation (QG) aims at generating natural and relevant questions that can be answered by a given answer in some context. Existing QG models suffer from a semantic drift problem, i.e., the semantics of the model-generated question drifts away from the given context and answer. In this paper, we first propose two semantics-enhanced rewards obtained from downstream question paraphrasing and question answering tasks to regularize the QG model to generate semantically valid questions. Second, since the traditional evaluation metrics (e.g., BLEU) often fall short in evaluating the quality of generated questions, we propose a QA-based evaluation method which measures the QG models ability to mimic human annotators in generating QA training data. Experiments show that our method achieves the new state-of-the-art performance w.r.t. traditional metrics, and also performs best on our QA-based evaluation metrics. Further, we investigate how to use our QG model to augment QA datasets and enable semi-supervised QA. We propose two ways to generate synthetic QA pairs: generate new questions from existing articles or collect QA pairs from new articles. We also propose two empirically effective strategies, a data filter and mixing mini-batch training, to properly use the QG-generated data for QA. Experiments show that our method improves over both BiDAF and BERT QA baselines, even without introducing new articles.
Spoken question answering (SQA) is a challenging task that requires the machine to fully understand the complex spoken documents. Automatic speech recognition (ASR) plays a significant role in the development of QA systems. However, the recent work shows that ASR systems generate highly noisy transcripts, which critically limit the capability of machine comprehension on the SQA task. To address the issue, we present a novel distillation framework. Specifically, we devise a training strategy to perform knowledge distillation (KD) from spoken documents and written counterparts. Our work makes a step towards distilling knowledge from the language model as a supervision signal to lead to better student accuracy by reducing the misalignment between automatic and manual transcriptions. Experiments demonstrate that our approach outperforms several state-of-the-art language models on the Spoken-SQuAD dataset.
Question answering (QA) systems provide a way of querying the information available in various formats including, but not limited to, unstructured and structured data in natural languages. It constitutes a considerable part of conversational artificial intelligence (AI) which has led to the introduction of a special research topic on Conversational Question Answering (CQA), wherein a system is required to understand the given context and then engages in multi-turn QA to satisfy the users information needs. Whilst the focus of most of the existing research work is subjected to single-turn QA, the field of multi-turn QA has recently grasped attention and prominence owing to the availability of large-scale, multi-turn QA datasets and the development of pre-trained language models. With a good amount of models and research papers adding to the literature every year recently, there is a dire need of arranging and presenting the related work in a unified manner to streamline future research. This survey, therefore, is an effort to present a comprehensive review of the state-of-the-art research trends of CQA primarily based on reviewed papers from 2016-2021. Our findings show that there has been a trend shift from single-turn to multi-turn QA which empowers the field of Conversational AI from different perspectives. This survey is intended to provide an epitome for the research community with the hope of laying a strong foundation for the field of CQA.
This paper introduces QAConv, a new question answering (QA) dataset that uses conversations as a knowledge source. We focus on informative conversations including business emails, panel discussions, and work channels. Unlike open-domain and task-oriented dialogues, these conversations are usually long, complex, asynchronous, and involve strong domain knowledge. In total, we collect 34,204 QA pairs, including span-based, free-form, and unanswerable questions, from 10,259 selected conversations with both human-written and machine-generated questions. We segment long conversations into chunks, and use a question generator and dialogue summarizer as auxiliary tools to collect multi-hop questions. The dataset has two testing scenarios, chunk mode and full mode, depending on whether the grounded chunk is provided or retrieved from a large conversational pool. Experimental results show that state-of-the-art QA systems trained on existing QA datasets have limited zero-shot ability and tend to predict our questions as unanswerable. Fine-tuning such systems on our corpus can achieve significant improvement up to 23.6% and 13.6% in both chunk mode and full mode, respectively.
Spoken conversational question answering (SCQA) requires machines to model complex dialogue flow given the speech utterances and text corpora. Different from traditional text question answering (QA) tasks, SCQA involves audio signal processing, passage comprehension, and contextual understanding. However, ASR systems introduce unexpected noisy signals to the transcriptions, which result in performance degradation on SCQA. To overcome the problem, we propose CADNet, a novel contextualized attention-based distillation approach, which applies both cross-attention and self-attention to obtain ASR-robust contextualized embedding representations of the passage and dialogue history for performance improvements. We also introduce the spoken conventional knowledge distillation framework to distill the ASR-robust knowledge from the estimated probabilities of the teacher model to the student. We conduct extensive experiments on the Spoken-CoQA dataset and demonstrate that our approach achieves remarkable performance in this task.