Do you want to publish a course? Click here

Multi-Task Learning with Language Modeling for Question Generation

83   0   0.0 ( 0 )
 Added by Wenjie Zhou
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper explores the task of answer-aware questions generation. Based on the attention-based pointer generator model, we propose to incorporate an auxiliary task of language modeling to help question generation in a hierarchical multi-task learning structure. Our joint-learning model enables the encoder to learn a better representation of the input sequence, which will guide the decoder to generate more coherent and fluent questions. On both SQuAD and MARCO datasets, our multi-task learning model boosts the performance, achieving state-of-the-art results. Moreover, human evaluation further proves the high quality of our generated questions.



rate research

Read More

End-to-end automatic speech recognition (ASR) systems are increasingly popular due to their relative architectural simplicity and competitive performance. However, even though the average accuracy of these systems may be high, the performance on rare content words often lags behind hybrid ASR systems. To address this problem, second-pass rescoring is often applied leveraging upon language modeling. In this paper, we propose a second-pass system with multi-task learning, utilizing semantic targets (such as intent and slot prediction) to improve speech recognition performance. We show that our rescoring model trained with these additional tasks outperforms the baseline rescoring model, trained with only the language modeling task, by 1.4% on a general test and by 2.6% on a rare word test set in terms of word-error-rate relative (WERR). Our best ASR system with multi-task LM shows 4.6% WERR deduction compared with RNN Transducer only ASR baseline for rare words recognition.
Asking questions is one of the most crucial pedagogical techniques used by teachers in class. It not only offers open-ended discussions between teachers and students to exchange ideas but also provokes deeper student thought and critical analysis. Providing teachers with such pedagogical feedback will remarkably help teachers improve their overall teaching quality over time in classrooms. Therefore, in this work, we build an end-to-end neural framework that automatically detects questions from teachers audio recordings. Compared with traditional methods, our approach not only avoids cumbersome feature engineering, but also adapts to the task of multi-class question detection in real education scenarios. By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions. We conducted extensive experiments on the question detection tasks in a real-world online classroom dataset and the results demonstrate the superiority of our model in terms of various evaluation metrics.
Approaches to Grounded Language Learning typically focus on a single task-based final performance measure that may not depend on desirable properties of the learned hidden representations, such as their ability to predict salient attributes or to generalise to unseen situations. To remedy this, we present GROLLA, an evaluation framework for Grounded Language Learning with Attributes with three sub-tasks: 1) Goal-oriented evaluation; 2) Object attribute prediction evaluation; and 3) Zero-shot evaluation. We also propose a new dataset CompGuessWhat?! as an instance of this framework for evaluating the quality of learned neural representations, in particular concerning attribute grounding. To this end, we extend the original GuessWhat?! dataset by including a semantic layer on top of the perceptual one. Specifically, we enrich the VisualGenome scene graphs associated with the GuessWhat?! images with abstract and situated attributes. By using diagnostic classifiers, we show that current models learn representations that are not expressive enough to encode object attributes (average F1 of 44.27). In addition, they do not learn strategies nor representations that are robust enough to perform well when novel scenes or objects are involved in gameplay (zero-shot best accuracy 50.06%).
Nowadays, offensive content in social media has become a serious problem, and automatically detecting offensive language is an essential task. In this paper, we build an offensive language detection system, which combines multi-task learning with BERT-based models. Using a pre-trained language model such as BERT, we can effectively learn the representations for noisy text in social media. Besides, to boost the performance of offensive language detection, we leverage the supervision signals from other related tasks. In the OffensEval-2020 competition, our model achieves 91.51% F1 score in English Sub-task A, which is comparable to the first place (92.23%F1). An empirical analysis is provided to explain the effectiveness of our approaches.
79 - Daniel Campos 2021
Language Models like ELMo and BERT have provided robust representations of natural language, which serve as the language understanding component for a diverse range of downstream tasks.Curriculum learning is a method that employs a structured training regime instead, which has been leveraged in computer vision and machine translation to improve model training speed and model performance. While language models have proven transformational for the natural language processing community, these models have proven expensive, energy-intensive, and challenging to train. In this work, we explore the effect of curriculum learning on language model pretraining using various linguistically motivated curricula and evaluate transfer performance on the GLUE Benchmark. Despite a broad variety of training methodologies and experiments we do not find compelling evidence that curriculum learning methods improve language model training.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا