Do you want to publish a course? Click here

Real-time forecasts of the 2019-nCoV epidemic in China from February 5th to February 24th, 2020

81   0   0.0 ( 0 )
 Added by Gerardo Chowell
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

The initial cluster of severe pneumonia cases that triggered the 2019-nCoV epidemic was identified in Wuhan, China in December 2019. While early cases of the disease were linked to a wet market, human-to-human transmission has driven the rapid spread of the virus throughout China. The ongoing outbreak presents a challenge for modelers, as limited data are available on the early growth trajectory, and the epidemiological characteristics of the novel coronavirus are yet to be fully elucidated. We provide timely short-term forecasts of the cumulative number of confirmed reported cases in Hubei province, the epicenter of the epidemic, and for the overall trajectory in China, excluding the province of Hubei. We collect daily reported cumulative case data for the 2019-nCoV outbreak for each Chinese province from the National Health Commission of China. Here, we provide 5, 10, and 15 day forecasts for five consecutive days, February 5th through February 9th, with quantified uncertainty based on a generalized logistic growth model, the Richards growth model, and a sub-epidemic wave model. Our most recent forecasts reported here based on data up until February 9, 2020, largely agree across the three models presented and suggest an average range of 7,409-7,496 additional cases in Hubei and 1,128-1,929 additional cases in other provinces within the next five days. Models also predict an average total cumulative case count between 37,415 - 38,028 in Hubei and 11,588 - 13,499 in other provinces by February 24, 2020. Mean estimates and uncertainty bounds for both Hubei and other provinces have remained relatively stable in the last three reporting dates (February 7th - 9th). Our forecasts suggest that the containment strategies implemented in China are successfully reducing transmission and that the epidemic growth has slowed in recent days.



rate research

Read More

82 - Marie Garin 2021
We review epidemiological models for the propagation of the COVID-19 pandemic during the early months of the outbreak: from February to May 2020. The aim is to propose a methodological review that highlights the following characteristics: (i) the epidemic propagation models, (ii) the modeling of intervention strategies, (iii) the models and estimation procedures of the epidemic parameters and (iv) the characteristics of the data used. We finally selected 80 articles from open access databases based on criteria such as the theoretical background, the reproducibility, the incorporation of interventions strategies, etc. It mainly resulted to phenomenological, compartmental and individual-level models. A digital companion including an online sheet, a Kibana interface and a markdown document is proposed. Finally, this work provides an opportunity to witness how the scientific community reacted to this unique situation.
Since the SARS outbreak in 2003, a lot of predictive epidemiological models have been proposed. At the end of 2019, a novel coronavirus, termed as 2019-nCoV, has broken out and is propagating in China and the world. Here we propose a multi-model ordinary differential equation set neural network (MMODEs-NN) and model-free methods to predict the interprovincial transmissions in mainland China, especially those from Hubei Province. Compared with the previously proposed epidemiological models, the proposed network can simulate the transportations with the ODEs activation method, while the model-free methods based on the sigmoid function, Gaussian function, and Poisson distribution are linear and fast to generate reasonable predictions. According to the numerical experiments and the realities, the special policies for controlling the disease are successful in some provinces, and the transmission of the epidemic, whose outbreak time is close to the beginning of China Spring Festival travel rush, is more likely to decelerate before February 18 and to end before April 2020. The proposed mathematical and artificial intelligence methods can give consistent and reasonable predictions of the 2019-nCoV ending. We anticipate our work to be a starting point for comprehensive prediction researches of the 2019-nCoV.
The appearance of a novel coronavirus named Middle East (ME) Respiratory Syndrome Coronavirus (MERS-CoV) has raised global public health concerns regarding the current situation and its future evolution. Here we propose an integrative maximum likelihood analysis of both cluster data in the ME region and importations in Europe to assess transmission scenario and incidence of sporadic infections. Our approach is based on a spatial-transmission model integrating mobility data worldwide and allows for variations in the zoonotic/environmental transmission and underascertainment. Maximum likelihood estimates for the ME region indicate the occurrence of a subcritical epidemic (R=0.50, 95% confidence interval (CI) 0.30-0.77) associated with a 0.28 (95% CI 0.12-0.85) daily rate of sporadic introductions. Infections in the region appear to be mainly dominated by zoonotic/environmental transmissions, with possible underascertainment (95% CI of estimated to observed sporadic cases in the range 1.03-7.32). No time evolution of the situation emerges. Analyses of flight passenger data from the region indicate areas at high risk of importation. While dismissing an immediate threat for global health security, this analysis provides a baseline scenario for future reference and updates, suggests reinforced surveillance to limit underascertainment, and calls for increased alertness in high-risk areas worldwide.
At the moment of writing (12 February, 2020), the future evolution of the 2019-nCoV virus is unclear. Predictions of the further course of the epidemic are decisive to deploy targeted disease control measures. We consider a network-based model to describe the 2019-nCoV epidemic in the Hubei province. The network is composed of the cities in Hubei and their interactions (e.g., traffic flow). However, the precise interactions between cities is unknown and must be inferred from observing the epidemic. We propose a network-based method to predict the future prevalence of the 2019-nCoV virus in every city. Our results indicate that network-based modelling is beneficial for an accurate forecast of the epidemic outbreak.
Pairwise models are used widely to model epidemic spread on networks. These include the modelling of susceptible-infected-removed (SIR) epidemics on regular networks and extensions to SIS dynamics and contact tracing on more exotic networks exhibiting degree heterogeneity, directed and/or weighted links and clustering. However, extra features of the disease dynamics or of the network lead to an increase in system size and analytical tractability becomes problematic. Various `closures can be used to keep the system tractable. Focusing on SIR epidemics on regular but clustered networks, we show that even for the most complex closure we can determine the epidemic threshold as an asymptotic expansion in terms of the clustering coefficient.We do this by exploiting the presence of a system of fast variables, specified by the correlation structure of the epidemic, whose steady state determines the epidemic threshold. While we do not find the steady state analytically, we create an elegant asymptotic expansion of it. We validate this new threshold by comparing it to the numerical solution of the full system and find excellent agreement over a wide range of values of the clustering coefficient, transmission rate and average degree of the network. The technique carries over to pairwise models with other closures [1] and we note that the epidemic threshold will be model dependent. This emphasises the importance of model choice when dealing with realistic outbreaks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا