Do you want to publish a course? Click here

Network-Based Prediction of the 2019-nCoV Epidemic Outbreak in the Chinese Province Hubei

64   0   0.0 ( 0 )
 Added by Bastian Prasse
 Publication date 2020
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

At the moment of writing (12 February, 2020), the future evolution of the 2019-nCoV virus is unclear. Predictions of the further course of the epidemic are decisive to deploy targeted disease control measures. We consider a network-based model to describe the 2019-nCoV epidemic in the Hubei province. The network is composed of the cities in Hubei and their interactions (e.g., traffic flow). However, the precise interactions between cities is unknown and must be inferred from observing the epidemic. We propose a network-based method to predict the future prevalence of the 2019-nCoV virus in every city. Our results indicate that network-based modelling is beneficial for an accurate forecast of the epidemic outbreak.



rate research

Read More

70 - Jun Zhang , Lihong Wang , Ji Wang 2020
After the sudden outbreak of Coronavirus in Wuhan, continuous and rich data of the epidemic has been made public as the vital fact for decision support in control measures and aggressive implementation of containment strategies and plans. With the further growth and spreading of the virus, future resource allocation and planning under updated strategies and measures rely on careful study of the epidemic data and characteristics for accurate prediction and estimation. By using the SIR model and reported data, key parameters are obtained from least sum of squared errors for an accurate prediction of epidemic trend in the last four weeks.
105 - K. Choi , Hoyun Choi , 2020
The Covid-19 pandemic is ongoing worldwide, and the damage it has caused is unprecedented. For prevention, South Korea has adopted a local quarantine strategy rather than a global lockdown. This approach not only minimizes economic damage, but it also efficiently prevents the spread of the disease. In this work, the spread of COVID-19 under local quarantine measures is modeled using the Susceptible-Exposed-Infected-Recovered model on complex networks. In this network approach, the links connected to isolated people are disconnected and then reinstated when they are released. This link dynamics leads to time-dependent reproduction number. Numerical simulations are performed on networks with reaction rates estimated from empirical data. The temporal pattern of the cumulative number of confirmed cases is then reproduced. The results show that a large number of asymptomatic infected patients are detected as they are quarantined together with infected patients. Additionally, possible consequences of the breakdowns of local quarantine measures and social distancing are considered.
In this work, we address a multicoupled dynamics on complex networks with tunable structural segregation. Specifically, we work on a networked epidemic spreading under a vaccination campaign with agents in favor and against the vaccine. Our results show that such coupled dynamics exhibits a myriad of phenomena such as nonequilibrium transitions accompanied by bistability. Besides we observe the emergence of an intermediate optimal segregation level where the community structure enhances negative opinions over vaccination but counterintuitively hinders - rather than favoring - the global disease spreading. Thus, our results hint vaccination campaigns should avoid policies that end up segregating excessively anti-vaccine groups so that they effectively work as echo chambers in which individuals look to confirmation without jeopardising the safety of the whole population.
Understanding influencing factors is essential for the surveillance and prevention of infectious diseases, and the factors are likely to vary spatially and temporally as the disease progresses. Taking daily cases and deaths data during the coronavirus disease 2019 (COVID-19) outbreak in the U.S. as a case study, we develop a mobility-augmented geographically and temporally weighted regression (M-GTWR) model to quantify the spatiotemporal impacts of social-demographic factors and human activities on the COVID-19 dynamics. Different from the base GTWR model, we incorporate a mobility-adjusted distance weight matrix where travel mobility is used in addition to the spatial adjacency to capture the correlations among local observations. The model residuals suggest that the proposed model achieves a substantial improvement over other benchmark methods in addressing the spatiotemporal nonstationarity. Our results reveal that the impacts of social-demographic and human activity variables present significant spatiotemporal heterogeneity. In particular, a 1% increase in population density may lead to 0.63% and 0.71% more daily cases and deaths, and a 1% increase in the mean commuting time may result in 0.22% and 0.95% increases in daily cases and deaths. Although increased human activities will, in general, intensify the disease outbreak, we report that the effects of grocery and pharmacy-related activities are insignificant in areas with high population density. And activities at the workplace and public transit are found to either increase or decrease the number of cases and deaths, depending on particular locations. The results of our study establish a quantitative framework for identifying influencing factors during a disease outbreak, and the obtained insights may have significant implications in guiding the policy-making against infectious diseases.
80 - K. Roosa , Y. Lee , R. Luo 2020
The initial cluster of severe pneumonia cases that triggered the 2019-nCoV epidemic was identified in Wuhan, China in December 2019. While early cases of the disease were linked to a wet market, human-to-human transmission has driven the rapid spread of the virus throughout China. The ongoing outbreak presents a challenge for modelers, as limited data are available on the early growth trajectory, and the epidemiological characteristics of the novel coronavirus are yet to be fully elucidated. We provide timely short-term forecasts of the cumulative number of confirmed reported cases in Hubei province, the epicenter of the epidemic, and for the overall trajectory in China, excluding the province of Hubei. We collect daily reported cumulative case data for the 2019-nCoV outbreak for each Chinese province from the National Health Commission of China. Here, we provide 5, 10, and 15 day forecasts for five consecutive days, February 5th through February 9th, with quantified uncertainty based on a generalized logistic growth model, the Richards growth model, and a sub-epidemic wave model. Our most recent forecasts reported here based on data up until February 9, 2020, largely agree across the three models presented and suggest an average range of 7,409-7,496 additional cases in Hubei and 1,128-1,929 additional cases in other provinces within the next five days. Models also predict an average total cumulative case count between 37,415 - 38,028 in Hubei and 11,588 - 13,499 in other provinces by February 24, 2020. Mean estimates and uncertainty bounds for both Hubei and other provinces have remained relatively stable in the last three reporting dates (February 7th - 9th). Our forecasts suggest that the containment strategies implemented in China are successfully reducing transmission and that the epidemic growth has slowed in recent days.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا