Do you want to publish a course? Click here

Epidemic Models for COVID-19 during the First Wave from February to May 2020: a Methodological Review

83   0   0.0 ( 0 )
 Added by Alice Nicolai
 Publication date 2021
and research's language is English
 Authors Marie Garin




Ask ChatGPT about the research

We review epidemiological models for the propagation of the COVID-19 pandemic during the early months of the outbreak: from February to May 2020. The aim is to propose a methodological review that highlights the following characteristics: (i) the epidemic propagation models, (ii) the modeling of intervention strategies, (iii) the models and estimation procedures of the epidemic parameters and (iv) the characteristics of the data used. We finally selected 80 articles from open access databases based on criteria such as the theoretical background, the reproducibility, the incorporation of interventions strategies, etc. It mainly resulted to phenomenological, compartmental and individual-level models. A digital companion including an online sheet, a Kibana interface and a markdown document is proposed. Finally, this work provides an opportunity to witness how the scientific community reacted to this unique situation.



rate research

Read More

Large-scale testing is considered key to assess the state of the current COVID-19 pandemic. Yet, the link between the reported case numbers and the true state of the pandemic remains elusive. We develop mathematical models based on competing hypotheses regarding this link, thereby providing different prevalence estimates based on case numbers, and validate them by predicting SARS-CoV-2-attributed death rate trajectories. Assuming that individuals were tested based solely on a predefined risk of being infectious implies the absolute case numbers reflect the prevalence, but turned out to be a poor predictor, consistently overestimating growth rates at the beginning of two COVID-19 epidemic waves. In contrast, assuming that testing capacity is fully exploited performs better. This leads to using the percent-positive rate as a more robust indicator of epidemic dynamics, however we find it is subject to a saturation phenomenon that needs to be accounted for as the number of tests becomes larger.
80 - K. Roosa , Y. Lee , R. Luo 2020
The initial cluster of severe pneumonia cases that triggered the 2019-nCoV epidemic was identified in Wuhan, China in December 2019. While early cases of the disease were linked to a wet market, human-to-human transmission has driven the rapid spread of the virus throughout China. The ongoing outbreak presents a challenge for modelers, as limited data are available on the early growth trajectory, and the epidemiological characteristics of the novel coronavirus are yet to be fully elucidated. We provide timely short-term forecasts of the cumulative number of confirmed reported cases in Hubei province, the epicenter of the epidemic, and for the overall trajectory in China, excluding the province of Hubei. We collect daily reported cumulative case data for the 2019-nCoV outbreak for each Chinese province from the National Health Commission of China. Here, we provide 5, 10, and 15 day forecasts for five consecutive days, February 5th through February 9th, with quantified uncertainty based on a generalized logistic growth model, the Richards growth model, and a sub-epidemic wave model. Our most recent forecasts reported here based on data up until February 9, 2020, largely agree across the three models presented and suggest an average range of 7,409-7,496 additional cases in Hubei and 1,128-1,929 additional cases in other provinces within the next five days. Models also predict an average total cumulative case count between 37,415 - 38,028 in Hubei and 11,588 - 13,499 in other provinces by February 24, 2020. Mean estimates and uncertainty bounds for both Hubei and other provinces have remained relatively stable in the last three reporting dates (February 7th - 9th). Our forecasts suggest that the containment strategies implemented in China are successfully reducing transmission and that the epidemic growth has slowed in recent days.
105 - K. Choi , Hoyun Choi , 2020
The Covid-19 pandemic is ongoing worldwide, and the damage it has caused is unprecedented. For prevention, South Korea has adopted a local quarantine strategy rather than a global lockdown. This approach not only minimizes economic damage, but it also efficiently prevents the spread of the disease. In this work, the spread of COVID-19 under local quarantine measures is modeled using the Susceptible-Exposed-Infected-Recovered model on complex networks. In this network approach, the links connected to isolated people are disconnected and then reinstated when they are released. This link dynamics leads to time-dependent reproduction number. Numerical simulations are performed on networks with reaction rates estimated from empirical data. The temporal pattern of the cumulative number of confirmed cases is then reproduced. The results show that a large number of asymptomatic infected patients are detected as they are quarantined together with infected patients. Additionally, possible consequences of the breakdowns of local quarantine measures and social distancing are considered.
147 - Spencer A. Thomas 2021
We analysed publicly available data on place of occurrence of COVID-19 deaths from national statistical agencies in the UK between March 9 2020 and February 28 2021. We introduce a modified Weibull model that describes the deaths due to COVID-19 at a national and place of occurrence level. We observe similar trends in the UK where deaths due to COVID-19 first peak in Homes, followed by Hospitals and Care Homes 1-2 weeks later in the first and second waves. This is in line with the infectious period of the disease, indicating a possible transmission vehicle between the settings. Our results show that the first wave is characterised by fast growth and a slow reduction after the peak in deaths due to COVID-19. The second and third waves have the converse property, with slow growth and a rapid decrease from the peak. This difference may result from behavioural changes in the population (social distancing, masks, etc). Finally, we introduce a double logistic model to describe the dynamic proportion of COVID-19 deaths occurring in each setting. This analysis reveals that the proportion of COVID-19 deaths occurring in Care Homes increases from the start of the pandemic and past the peak in total number of COVID-19 deaths in the first wave. After the catastrophic impact in the first wave, the proportion of COVID-19 deaths occurring in Care Homes gradually decreased from is maximum after the first wave indicating residence were better protected in the second and third waves compared to the first.
84 - Tommy Nyberg 2021
Objective: To evaluate the relationship between coronavirus disease 2019 (COVID-19) diagnosis with SARS-CoV-2 variant B.1.1.7 (also known as Variant of Concern 202012/01) and the risk of hospitalisation compared to diagnosis with wildtype SARS-CoV-2 variants. Design: Retrospective cohort, analysed using stratified Cox regression. Setting: Community-based SARS-CoV-2 testing in England, individually linked with hospitalisation data. Participants: 839,278 laboratory-confirmed COVID-19 patients, of whom 36,233 had been hospitalised within 14 days, tested between 23rd November 2020 and 31st January 2021 and analysed at a laboratory with an available TaqPath assay that enables assessment of S-gene target failure (SGTF). SGTF is a proxy test for the B.1.1.7 variant. Patient data were stratified by age, sex, ethnicity, deprivation, region of residence, and date of positive test. Main outcome measures: Hospitalisation between 1 and 14 days after the first positive SARS-CoV-2 test. Results: 27,710 of 592,409 SGTF patients (4.7%) and 8,523 of 246,869 non-SGTF patients (3.5%) had been hospitalised within 1-14 days. The stratum-adjusted hazard ratio (HR) of hospitalisation was 1.52 (95% confidence interval [CI] 1.47 to 1.57) for COVID-19 patients infected with SGTF variants, compared to those infected with non-SGTF variants. The effect was modified by age (P<0.001), with HRs of 0.93-1.21 for SGTF compared to non-SGTF patients below age 20 years, 1.29 in those aged 20-29, and 1.45-1.65 in age groups 30 years or older. Conclusions: The results suggest that the risk of hospitalisation is higher for individuals infected with the B.1.1.7 variant compared to wildtype SARS-CoV-2, likely reflecting a more severe disease. The higher severity may be specific to adults above the age of 30.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا