Do you want to publish a course? Click here

Observing Movement of Dirac Cones from Single-Photon Dynamics

80   0   0.0 ( 0 )
 Added by Xian-Min Jin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene with honeycomb structure, being critically important in understanding physics of matter, exhibits exceptionally unusual half-integer quantum Hall effect and unconventional electronic spectrum with quantum relativistic phenomena. Particularly, graphene-like structure can be used for realizing topological insulator which inspires an intrinsic topological protection mechanism with strong immunity for maintaining coherence of quantum information. These various peculiar physics arise from the unique properties of Dirac cones which show high hole degeneracy, massless charge carriers and linear intersection of bands. Experimental observation of Dirac cones conventionally focuses on the energy-momentum space with bulk measurement. Recently, the wave function and band structure have been mapped into the real-space in photonic system, and made flexible control possible. Here, we demonstrate a direct observation of the movement of Dirac cones from single-photon dynamics in photonic graphene under different biaxial strains. Sharing the same spirit of wave-particle nature in quantum mechanics, we identify the movement of Dirac cones by dynamically detecting the edge modes and extracting the diffusing distance of the packets with accumulation and statistics on individual single-particle registrations. Our results of observing movement of Dirac cones from single-photon dynamics, together with the method of direct observation in real space by mapping the band structure defined in momentum space, pave the way to understand a variety of artificial structures in quantum regime.



rate research

Read More

Many of graphenes unique electronic properties emerge from its Dirac-like electronic energy spectrum. Similarly, it is expected that a nanophotonic system featuring Dirac dispersion will open a path to a number of important research avenues. To date, however, all proposed realizations of a photonic analog of graphene lack fully omnidirectional out-of-plane light confinement, which has prevented creating truly realistic implementations of this class of systems. Here we report on a novel route to achieve all-dielectric three-dimensional photonic materials featuring Dirac-like dispersion in a quasi-two-dimensional system. We further discuss how this finding could enable a dramatic enhancement of the spontaneous emission coupling efficiency (the beta-factor) over large areas, defying the common wisdom that the beta-factor degrades rapidly as the size of the system increases. These results might enable general new classes of large-area ultralow-threshold lasers, single-photon sources, quantum information processing devices and energy harvesting systems.
Two-dimensional Dirac semimetals have attracted much attention because of their linear energy dispersion and non-trivial Berry phase. Graphene-like 2D Dirac materials are gapless only within certain approximations, e.g., if spin-orbit coupling (SOC) is neglected. It has recently been reported that materials with nonsymmorphic crystal lattice possess symmetry-enforced Dirac-like band dispersion around certain high-symmetry momenta even in the presence of SOC. Here we calculate the optical absorption coefficient of nonsymmorphic semimetals, such as $alpha$-bismuthene, which hosts two anisotropic Dirac cones with different Fermi velocities along $x$ and $y$ directions.We find that the optical absorption coefficient depends strongly on the anisotropy factor and the photon polarization. When a magnetic field is applied perpendicular to the plane of the material, the absorption coefficient also depends on an internal parameter we termed the mixing angle of the band structure. We further find that an in-plane magnetic field, while leaving the system gapless, can induce a Van-Hove singularity in the joint density of states: this causes a significant enhancement of the optical absorption at the frequency of the singularity for one direction of polarization but not for the orthogonal one, making the optical properties even more strongly dependent on polarization. Due to the anisotropy present in our model, the Dirac cones at two high-symmetry momenta in the Brillouin zone contribute very differently to the optical absorbance. Consequently, it might be possible to preferentially populate one valley or the other by varying photon polarization and frequency. These results suggest that nonsymmorphic 2D Dirac semimetals are excellent candidate materials for tunable magneto-optic devices.
The opening of a gap in single-layer graphene is often ascribed to the breaking of the equivalence between the two carbon sublattices. We show by angle-resolved photoemission spectroscopy that Ir- and Na-modified graphene grown on the Ir(111) surface presents a very large unconventional gap that can be described in terms of a phenomenological massless Dirac model. We discuss the consequences and differences of this model in comparison of the standard massive gap model, and we investigate the conditions under which such anomalous gap can arise from a spontaneous symmetry breaking.
We report measurements of the cyclotron mass in graphene for carrier concentrations n varying over three orders of magnitude. In contrast to the single-particle picture, the real spectrum of graphene is profoundly nonlinear so that the Fermi velocity describing the spectral slope reaches ~3x10^6 m/s at n <10^10 cm^-2, three times the value commonly used for graphene. The observed changes are attributed to electron-electron interaction that renormalizes the Dirac spectrum because of weak screening. Our experiments also put an upper limit of ~0.1 meV on the possible gap in graphene.
Graphene is a 2-dimensional material with high carrier mobility and thermal conductivity, suitable for high-speed electronics. Conduction and valence bands touch at the Dirac point. The absorptivity of single-layer graphene is 2.3%, nearly independent of wavelength. Here we investigate the thermal radiation from biased graphene transistors. We find that the emission spectrum of single-layer graphene follows that of a grey body with constant emissivity (1.6 pm 0.8)%. Most importantly, we can extract the temperature distribution in the ambipolar graphene channel, as confirmed by Stokes/anti-Stokes measurements. The biased graphene exhibits a temperature maximum whose location can be controlled by the gate voltage. We show that this peak in temperature reveals the spatial location of the minimum in carrier density, i.e. the Dirac point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا