We report measurements of the cyclotron mass in graphene for carrier concentrations n varying over three orders of magnitude. In contrast to the single-particle picture, the real spectrum of graphene is profoundly nonlinear so that the Fermi velocity describing the spectral slope reaches ~3x10^6 m/s at n <10^10 cm^-2, three times the value commonly used for graphene. The observed changes are attributed to electron-electron interaction that renormalizes the Dirac spectrum because of weak screening. Our experiments also put an upper limit of ~0.1 meV on the possible gap in graphene.
The opening of a gap in single-layer graphene is often ascribed to the breaking of the equivalence between the two carbon sublattices. We show by angle-resolved photoemission spectroscopy that Ir- and Na-modified graphene grown on the Ir(111) surface presents a very large unconventional gap that can be described in terms of a phenomenological massless Dirac model. We discuss the consequences and differences of this model in comparison of the standard massive gap model, and we investigate the conditions under which such anomalous gap can arise from a spontaneous symmetry breaking.
Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tuneable band gap. However, no consistent picture of the gaps effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second sub-state of the conduction band, in which the excited electrons decay through fast, phonon-assisted inter-band transitions.
Graphene with high carrier mobility mu is required both for graphene-based electronic devices and for the investigation of the fundamental properties of graphenes Dirac fermions. It is largely accepted that the mobility-limiting factor in graphene is the Coulomb scattering off of charged impurities that reside either on graphene or in the underlying substrate. This is true both for traditional graphene devices on SiO2 substrates and possibly for the recently reported high-mobility suspended and supported devices. An attractive approach to reduce such scattering is to place graphene in an environment with high static dielectric constant kappa that would effectively screen the electric field due to the impurities. However, experiments so far report only a modest effect of high-kappa environment on mobility. Here, we investigate the effect of the dielectric environment of graphene by studying electrical transport in multi-terminal graphene devices that are suspended in liquids with kappa ranging from 1.9 to 33. For non-polar liquids (kappa <5) we observe a rapid increase of mu with kappa and report a record room-temperature mobility as large as ~60,000 cm2/Vs for graphene devices in anisole (kappa=4.3), while in polar liquids (kappa >18) we observe a drastic drop in mobility. We demonstrate that non-polar liquids enhance mobility by screening charged impurities adsorbed on graphene, while charged ions in polar liquids cause the observed mobility suppression. Furthermore, using molecular dynamics simulation we establish that scattering by out-of-plane flexural phonons, a dominant scattering mechanism in suspended graphene in vacuum at room temperature, is suppressed by the presence of liquids. We expect that our findings may provide avenues to control and reduce carrier scattering in future graphene-based electronic devices.
Graphene phonons are measured as a function of electron doping via the addition of potassium adatoms. In the low doping regime, the in-plane carbon G-peak hardens and narrows with increasing doping, analogous to the trend seen in graphene doped via the field-effect. At high dopings, beyond those accessible by the field-effect, the G-peak strongly softens and broadens. This is interpreted as a dynamic, non-adiabatic renormalization of the phonon self-energy. At dopings between the light and heavily doped regimes, we find a robust inhomogeneous phase where the potassium coverage is segregated into regions of high and low density. The phonon energies, linewidths and tunability are remarkably similar for 1-4 layer graphene, but significantly different to doped bulk graphite.
Tilted Dirac/Weyl fermions admit a geometric description in terms of an effective spacetime metric. Using this metric, we formulate the hydrodynamics theory for tilted Dirac/Weyl materials in $d+1$ spacetime dimensions. We find that the mingling of spacetime through the off-diagonal components of the metric gives rise to: (i) heat and electric currents proportional to the {em temporal} gradient of temperature, $partial_t T$ and (ii) a non-zero Hall condductance $sigma^{ij}propto zeta^izeta^i$ where $zeta^j$ parametrizes the tilt in $j$th space direction. The finding (i) above suggests that naturally available sources of $partial_t T$ in hot deserts can serve as new concept for the extraction of electricity from the spacetime geometry. We find a further tilt-induced non-Drude contribution to conductivity which can be experimentally disentangles from the usual Drude pole.