Do you want to publish a course? Click here

Massless Dirac cones in graphene: experiments and theory

379   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The opening of a gap in single-layer graphene is often ascribed to the breaking of the equivalence between the two carbon sublattices. We show by angle-resolved photoemission spectroscopy that Ir- and Na-modified graphene grown on the Ir(111) surface presents a very large unconventional gap that can be described in terms of a phenomenological massless Dirac model. We discuss the consequences and differences of this model in comparison of the standard massive gap model, and we investigate the conditions under which such anomalous gap can arise from a spontaneous symmetry breaking.



rate research

Read More

We report measurements of the cyclotron mass in graphene for carrier concentrations n varying over three orders of magnitude. In contrast to the single-particle picture, the real spectrum of graphene is profoundly nonlinear so that the Fermi velocity describing the spectral slope reaches ~3x10^6 m/s at n <10^10 cm^-2, three times the value commonly used for graphene. The observed changes are attributed to electron-electron interaction that renormalizes the Dirac spectrum because of weak screening. Our experiments also put an upper limit of ~0.1 meV on the possible gap in graphene.
We report on the clear evidence of massless Dirac fermions in two-dimensional system based on III-V semiconductors. Using a gated Hall bar made on a three-layer InAs/GaSb/InAs quantum well, we restore the Landau levels fan chart by magnetotransport and unequivocally demonstrate a gapless state in our sample. Measurements of cyclotron resonance at different electron concentrations directly indicate a linear band crossing at the $Gamma$ point of Brillouin zone. Analysis of experimental data within analytical Dirac-like Hamiltonian allows us not only determing velocity $v_F=1.8cdot10^5$ m/s of massless Dirac fermions but also demonstrating significant non-linear dispersion at high energies.
Graphene with honeycomb structure, being critically important in understanding physics of matter, exhibits exceptionally unusual half-integer quantum Hall effect and unconventional electronic spectrum with quantum relativistic phenomena. Particularly, graphene-like structure can be used for realizing topological insulator which inspires an intrinsic topological protection mechanism with strong immunity for maintaining coherence of quantum information. These various peculiar physics arise from the unique properties of Dirac cones which show high hole degeneracy, massless charge carriers and linear intersection of bands. Experimental observation of Dirac cones conventionally focuses on the energy-momentum space with bulk measurement. Recently, the wave function and band structure have been mapped into the real-space in photonic system, and made flexible control possible. Here, we demonstrate a direct observation of the movement of Dirac cones from single-photon dynamics in photonic graphene under different biaxial strains. Sharing the same spirit of wave-particle nature in quantum mechanics, we identify the movement of Dirac cones by dynamically detecting the edge modes and extracting the diffusing distance of the packets with accumulation and statistics on individual single-particle registrations. Our results of observing movement of Dirac cones from single-photon dynamics, together with the method of direct observation in real space by mapping the band structure defined in momentum space, pave the way to understand a variety of artificial structures in quantum regime.
We investigate a generalized two-dimensional Weyl Hamiltonian, which may describe the low-energy properties of mechanically deformed graphene and of the organic compound alpha-(BEDT-TTF)_2I_3 under pressure. The associated dispersion has generically the form of tilted anisotropic Dirac cones. The tilt arises due to next-nearest-neighbor hopping when the Dirac points, where the valence band touches the conduction band, do not coincide with crystallographic high-symmetry points within the first Brillouin zone. Within a semiclassical treatment, we describe the formation of Landau levels in a strong magnetic field, the relativistic form of which is reminiscent to that of graphene, with a renormalized Fermi velocity due to the tilt of the Dirac cones. These relativistic Landau levels, experimentally accessible via spectroscopy or even a quantum Hall effect measurement, may be used as a direct experimental verification of Dirac cones in alpha-(BEDT-TTF)_2I_3.
129 - J. Escrig , S. Allende , D. Altbir 2011
The hysteresis curves of multilayer microwires consisting of a soft magnetic nucleus, intermediate non-magnetic layers, and an external hard magnetic layer are investigated. The magnetostatic interaction between magnetic layers is proved to give rise to an antiferromagnetic-like coupling resulting in a magnetostatic bias in the hysteresis curves of the soft nucleus. This magnetostatic biasing effect is investigated in terms of the microwire geometry. The experimental results are interpreted considering an analytical model taking into account the magnetostatic interaction between the magnetic layers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا