Do you want to publish a course? Click here

Parity of transversals of Latin squares

136   0   0.0 ( 0 )
 Added by Ian Wanless
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a notion of parity for transversals, and use it to show that in Latin squares of order $2 bmod 4$, the number of transversals is a multiple of 4. We also demonstrate a number of relationships (mostly congruences modulo 4) involving $E_1,dots, E_n$, where $E_i$ is the number of diagonals of a given Latin square that contain exactly $i$ different symbols. Let $A(imid j)$ denote the matrix obtained by deleting row $i$ and column $j$ from a parent matrix $A$. Define $t_{ij}$ to be the number of transversals in $L(imid j)$, for some fixed Latin square $L$. We show that $t_{ab}equiv t_{cd}bmod2$ for all $a,b,c,d$ and $L$. Also, if $L$ has odd order then the number of transversals of $L$ equals $t_{ab}$ mod 2. We conjecture that $t_{ac} + t_{bc} + t_{ad} + t_{bd} equiv 0 bmod 4$ for all $a,b,c,d$. In the course of our investigations we prove several results that could be of interest in other contexts. For example, we show that the number of perfect matchings in a $k$-regular bipartite graph on $2n$ vertices is divisible by $4$ when $n$ is odd and $kequiv0bmod 4$. We also show that $${rm per}, A(a mid c)+{rm per}, A(b mid c)+{rm per}, A(a mid d)+{rm per}, A(b mid d) equiv 0 bmod 4$$ for all $a,b,c,d$, when $A$ is an integer matrix of odd order with all row and columns sums equal to $kequiv2bmod4$.



rate research

Read More

We develop a limit theory of Latin squares, paralleling the recent limit theories of dense graphs and permutations. We introduce a notion of density, an appropriate version of the cut distance, and a space of limit objects - so-called Latinons. Key results of our theory are the compactness of the limit space and the equivalence of the topologies induced by the cut distance and the left-convergence. Last, using Keevashs recent results on combinatorial designs, we prove that each Latinon can be approximated by a finite Latin square.
We prove a conjecture by Garbe et al. [arXiv:2010.07854] by showing that a Latin square is quasirandom if and only if the density of every 2x3 pattern is 1/720+o(1). This result is the best possible in the sense that 2x3 cannot be replaced with 2x2 or 1xN for any N.
An array is row-Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row-Latin. A transversal in an $ntimes n$ array is a selection of $n$ different symbols from different rows and different columns. We prove that every $n times n$ Latin array containing at least $(2-sqrt{2}) n^2$ distinct symbols has a transversal. Also, every $n times n$ row-Latin array containing at least $frac14(5-sqrt{5})n^2$ distinct symbols has a transversal. Finally, we show by computation that every Latin array of order $7$ has a transversal, and we describe all smaller Latin arrays that have no transversal.
A Latin square has six conjugate Latin squares obtained by uniformly permuting its (row, column, symbol) triples. We say that a Latin square has conjugate symmetry if at least two of its six conjugates are equal. We enumerate Latin squares with conjugate symmetry and classify them according to several common notions of equivalence. We also do similar enumerations under additional hypotheses, such as assuming the Latin square is reduced, diagonal, idempotent or unipotent. Our data corrected an error in earlier literature and suggested several patterns that we then found proofs for, including (1) The number of isomorphism classes of semisymmetric idempotent Latin squares of order $n$ equals the number of isomorphism classes of semisymmetric unipotent Latin squares of order $n+1$, and (2) Suppose $A$ and $B$ are totally symmetric Latin squares of order $n otequiv0bmod3$. If $A$ and $B$ are paratopic then $A$ and $B$ are isomorphic.
Let $P$ be a partial latin square of prime order $p>7$ consisting of three cyclically generated transversals. Specifically, let $P$ be a partial latin square of the form: [ P={(i,c+i,s+i),(i,c+i,s+i),(i,c+i,s+i)mid 0 leq i< p} ] for some distinct $c,c,c$ and some distinct $s,s,s$. In this paper we show that any such $P$ completes to a latin square which is diagonally cyclic.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا