Do you want to publish a course? Click here

Limits of Latin squares

77   0   0.0 ( 0 )
 Added by Frederik Garbe
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We develop a limit theory of Latin squares, paralleling the recent limit theories of dense graphs and permutations. We introduce a notion of density, an appropriate version of the cut distance, and a space of limit objects - so-called Latinons. Key results of our theory are the compactness of the limit space and the equivalence of the topologies induced by the cut distance and the left-convergence. Last, using Keevashs recent results on combinatorial designs, we prove that each Latinon can be approximated by a finite Latin square.



rate research

Read More

We prove a conjecture by Garbe et al. [arXiv:2010.07854] by showing that a Latin square is quasirandom if and only if the density of every 2x3 pattern is 1/720+o(1). This result is the best possible in the sense that 2x3 cannot be replaced with 2x2 or 1xN for any N.
135 - Darcy Best , Ian M. Wanless 2019
We introduce a notion of parity for transversals, and use it to show that in Latin squares of order $2 bmod 4$, the number of transversals is a multiple of 4. We also demonstrate a number of relationships (mostly congruences modulo 4) involving $E_1,dots, E_n$, where $E_i$ is the number of diagonals of a given Latin square that contain exactly $i$ different symbols. Let $A(imid j)$ denote the matrix obtained by deleting row $i$ and column $j$ from a parent matrix $A$. Define $t_{ij}$ to be the number of transversals in $L(imid j)$, for some fixed Latin square $L$. We show that $t_{ab}equiv t_{cd}bmod2$ for all $a,b,c,d$ and $L$. Also, if $L$ has odd order then the number of transversals of $L$ equals $t_{ab}$ mod 2. We conjecture that $t_{ac} + t_{bc} + t_{ad} + t_{bd} equiv 0 bmod 4$ for all $a,b,c,d$. In the course of our investigations we prove several results that could be of interest in other contexts. For example, we show that the number of perfect matchings in a $k$-regular bipartite graph on $2n$ vertices is divisible by $4$ when $n$ is odd and $kequiv0bmod 4$. We also show that $${rm per}, A(a mid c)+{rm per}, A(b mid c)+{rm per}, A(a mid d)+{rm per}, A(b mid d) equiv 0 bmod 4$$ for all $a,b,c,d$, when $A$ is an integer matrix of odd order with all row and columns sums equal to $kequiv2bmod4$.
A Latin square has six conjugate Latin squares obtained by uniformly permuting its (row, column, symbol) triples. We say that a Latin square has conjugate symmetry if at least two of its six conjugates are equal. We enumerate Latin squares with conjugate symmetry and classify them according to several common notions of equivalence. We also do similar enumerations under additional hypotheses, such as assuming the Latin square is reduced, diagonal, idempotent or unipotent. Our data corrected an error in earlier literature and suggested several patterns that we then found proofs for, including (1) The number of isomorphism classes of semisymmetric idempotent Latin squares of order $n$ equals the number of isomorphism classes of semisymmetric unipotent Latin squares of order $n+1$, and (2) Suppose $A$ and $B$ are totally symmetric Latin squares of order $n otequiv0bmod3$. If $A$ and $B$ are paratopic then $A$ and $B$ are isomorphic.
In this note, we study large deviations of the number $mathbf{N}$ of intercalates ($2times2$ combinatorial subsquares which are themselves Latin squares) in a random $ntimes n$ Latin square. In particular, for constant $delta>0$ we prove that $Pr(mathbf{N}le(1-delta)n^{2}/4)leexp(-Omega(n^{2}))$ and $Pr(mathbf{N}ge(1+delta)n^{2}/4)leexp(-Omega(n^{4/3}(log n)^{2/3}))$, both of which are sharp up to logarithmic factors in their exponents. As a consequence, we deduce that a typical order-$n$ Latin square has $(1+o(1))n^{2}/4$ intercalates, matching a lower bound due to Kwan and Sudakov and resolving an old conjecture of McKay and Wanless.
Our main result essentially reduces the problem of finding an edge-decomposition of a balanced r-partite graph of large minimum degree into r-cliques to the problem of finding a fractional r-clique decomposition or an approximate one. Together with very recent results of Bowditch and Dukes as well as Montgomery on fractional decompositions into triangles and cliques respectively, this gives the best known bounds on the minimum degree which ensures an edge-decomposition of an r-partite graph into r-cliques (subject to trivially necessary divisibility conditions). The case of triangles translates into the setting of partially completed Latin squares and more generally the case of r-cliques translates into the setting of partially completed mutually orthogonal Latin squares.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا