Do you want to publish a course? Click here

Enumeration of Latin squares with conjugate symmetry

79   0   0.0 ( 0 )
 Added by Ian Wanless
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

A Latin square has six conjugate Latin squares obtained by uniformly permuting its (row, column, symbol) triples. We say that a Latin square has conjugate symmetry if at least two of its six conjugates are equal. We enumerate Latin squares with conjugate symmetry and classify them according to several common notions of equivalence. We also do similar enumerations under additional hypotheses, such as assuming the Latin square is reduced, diagonal, idempotent or unipotent. Our data corrected an error in earlier literature and suggested several patterns that we then found proofs for, including (1) The number of isomorphism classes of semisymmetric idempotent Latin squares of order $n$ equals the number of isomorphism classes of semisymmetric unipotent Latin squares of order $n+1$, and (2) Suppose $A$ and $B$ are totally symmetric Latin squares of order $n otequiv0bmod3$. If $A$ and $B$ are paratopic then $A$ and $B$ are isomorphic.

rate research

Read More

We prove a conjecture by Garbe et al. [arXiv:2010.07854] by showing that a Latin square is quasirandom if and only if the density of every 2x3 pattern is 1/720+o(1). This result is the best possible in the sense that 2x3 cannot be replaced with 2x2 or 1xN for any N.
We develop a limit theory of Latin squares, paralleling the recent limit theories of dense graphs and permutations. We introduce a notion of density, an appropriate version of the cut distance, and a space of limit objects - so-called Latinons. Key results of our theory are the compactness of the limit space and the equivalence of the topologies induced by the cut distance and the left-convergence. Last, using Keevashs recent results on combinatorial designs, we prove that each Latinon can be approximated by a finite Latin square.
135 - Darcy Best , Ian M. Wanless 2019
We introduce a notion of parity for transversals, and use it to show that in Latin squares of order $2 bmod 4$, the number of transversals is a multiple of 4. We also demonstrate a number of relationships (mostly congruences modulo 4) involving $E_1,dots, E_n$, where $E_i$ is the number of diagonals of a given Latin square that contain exactly $i$ different symbols. Let $A(imid j)$ denote the matrix obtained by deleting row $i$ and column $j$ from a parent matrix $A$. Define $t_{ij}$ to be the number of transversals in $L(imid j)$, for some fixed Latin square $L$. We show that $t_{ab}equiv t_{cd}bmod2$ for all $a,b,c,d$ and $L$. Also, if $L$ has odd order then the number of transversals of $L$ equals $t_{ab}$ mod 2. We conjecture that $t_{ac} + t_{bc} + t_{ad} + t_{bd} equiv 0 bmod 4$ for all $a,b,c,d$. In the course of our investigations we prove several results that could be of interest in other contexts. For example, we show that the number of perfect matchings in a $k$-regular bipartite graph on $2n$ vertices is divisible by $4$ when $n$ is odd and $kequiv0bmod 4$. We also show that $${rm per}, A(a mid c)+{rm per}, A(b mid c)+{rm per}, A(a mid d)+{rm per}, A(b mid d) equiv 0 bmod 4$$ for all $a,b,c,d$, when $A$ is an integer matrix of odd order with all row and columns sums equal to $kequiv2bmod4$.
In this note, we study large deviations of the number $mathbf{N}$ of intercalates ($2times2$ combinatorial subsquares which are themselves Latin squares) in a random $ntimes n$ Latin square. In particular, for constant $delta>0$ we prove that $Pr(mathbf{N}le(1-delta)n^{2}/4)leexp(-Omega(n^{2}))$ and $Pr(mathbf{N}ge(1+delta)n^{2}/4)leexp(-Omega(n^{4/3}(log n)^{2/3}))$, both of which are sharp up to logarithmic factors in their exponents. As a consequence, we deduce that a typical order-$n$ Latin square has $(1+o(1))n^{2}/4$ intercalates, matching a lower bound due to Kwan and Sudakov and resolving an old conjecture of McKay and Wanless.
Do you want to know what an anti-chiece Latin square is? Or what a non-consecutive toroidal modular Latin square is? We invented a ton of new types of Latin squares, some inspired by existing Sudoku variations. We cant wait to introduce them to you and answer important questions, such as: do they even exist? If so, under what conditions? What are some of their interesting properties? And how do we generate them?
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا