No Arabic abstract
An array is row-Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row-Latin. A transversal in an $ntimes n$ array is a selection of $n$ different symbols from different rows and different columns. We prove that every $n times n$ Latin array containing at least $(2-sqrt{2}) n^2$ distinct symbols has a transversal. Also, every $n times n$ row-Latin array containing at least $frac14(5-sqrt{5})n^2$ distinct symbols has a transversal. Finally, we show by computation that every Latin array of order $7$ has a transversal, and we describe all smaller Latin arrays that have no transversal.
We introduce a notion of parity for transversals, and use it to show that in Latin squares of order $2 bmod 4$, the number of transversals is a multiple of 4. We also demonstrate a number of relationships (mostly congruences modulo 4) involving $E_1,dots, E_n$, where $E_i$ is the number of diagonals of a given Latin square that contain exactly $i$ different symbols. Let $A(imid j)$ denote the matrix obtained by deleting row $i$ and column $j$ from a parent matrix $A$. Define $t_{ij}$ to be the number of transversals in $L(imid j)$, for some fixed Latin square $L$. We show that $t_{ab}equiv t_{cd}bmod2$ for all $a,b,c,d$ and $L$. Also, if $L$ has odd order then the number of transversals of $L$ equals $t_{ab}$ mod 2. We conjecture that $t_{ac} + t_{bc} + t_{ad} + t_{bd} equiv 0 bmod 4$ for all $a,b,c,d$. In the course of our investigations we prove several results that could be of interest in other contexts. For example, we show that the number of perfect matchings in a $k$-regular bipartite graph on $2n$ vertices is divisible by $4$ when $n$ is odd and $kequiv0bmod 4$. We also show that $${rm per}, A(a mid c)+{rm per}, A(b mid c)+{rm per}, A(a mid d)+{rm per}, A(b mid d) equiv 0 bmod 4$$ for all $a,b,c,d$, when $A$ is an integer matrix of odd order with all row and columns sums equal to $kequiv2bmod4$.
Let $P$ be a partial latin square of prime order $p>7$ consisting of three cyclically generated transversals. Specifically, let $P$ be a partial latin square of the form: [ P={(i,c+i,s+i),(i,c+i,s+i),(i,c+i,s+i)mid 0 leq i< p} ] for some distinct $c,c,c$ and some distinct $s,s,s$. In this paper we show that any such $P$ completes to a latin square which is diagonally cyclic.
A Latin square has six conjugate Latin squares obtained by uniformly permuting its (row, column, symbol) triples. We say that a Latin square has conjugate symmetry if at least two of its six conjugates are equal. We enumerate Latin squares with conjugate symmetry and classify them according to several common notions of equivalence. We also do similar enumerations under additional hypotheses, such as assuming the Latin square is reduced, diagonal, idempotent or unipotent. Our data corrected an error in earlier literature and suggested several patterns that we then found proofs for, including (1) The number of isomorphism classes of semisymmetric idempotent Latin squares of order $n$ equals the number of isomorphism classes of semisymmetric unipotent Latin squares of order $n+1$, and (2) Suppose $A$ and $B$ are totally symmetric Latin squares of order $n otequiv0bmod3$. If $A$ and $B$ are paratopic then $A$ and $B$ are isomorphic.
We prove a conjecture by Garbe et al. [arXiv:2010.07854] by showing that a Latin square is quasirandom if and only if the density of every 2x3 pattern is 1/720+o(1). This result is the best possible in the sense that 2x3 cannot be replaced with 2x2 or 1xN for any N.
The following question was raised by Tuza in 1990 and Erdos et al. in 1992: if every edge of an n-vertex chordal graph G is contained in a clique of size at least four, does G have a clique transversal, i.e., a set of vertices meeting all non-trivial maximal cliques, of size at most n/4? We prove that every such graph G has a clique transversal of size at most 2(n-1)/7 if n>=5, which is the best possible bound.