Do you want to publish a course? Click here

Nanosecond Reversal of Three-Terminal Spin Hall Effect Memories Sustained at Cryogenic Temperatures

113   0   0.0 ( 0 )
 Added by Graham Rowlands
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We characterize the nanosecond pulse switching performance of the three-terminal magnetic tunnel junctions (MTJs), driven by the spin Hall effect (SHE) in the channel, at a cryogenic temperature of 3 K. The SHE-MTJ devices exhibit reasonable magnetic switching and reliable current switching by as short pulses as 1 ns of $<10^{12}$ A/m$^{2}$ magnitude, exceeding the expectation from conventional macrospin model. The pulse switching bit error rates reach below $10^{-6}$ for < 10 ns pulses. Similar performance is achieved with exponentially decaying pulses expected to be delivered to the SHE-MTJ device by a nanocryotron device in parallel configuration of a realistic memory cell structure. These results suggest the viability of the SHE-MTJ structure as a cryogenic memory element for exascale superconducting computing systems.



rate research

Read More

Temperature plays an important role in spin torque switching of magnetic tunnel junctions causing magnetization fluctuations that decrease the switching voltage but also introduce switching errors. Here we present a systematic study of the temperature dependence of the spin torque switching probability of state-of-the-art perpendicular magnetic tunnel junction nanopillars (40 to 60 nm in diameter) from room temperature down to 4 K, sampling up to a million switching events. The junction temperature at the switching voltage---obtained from the thermally assisted spin torque switching model---saturates at temperatures below about 75 K, showing that junction heating is significant below this temperature and that spin torque switching remains highly stochastic down to 4 K. A model of heat flow in a nanopillar junction shows this effect is associated with the reduced thermal conductivity and heat capacity of the metals in the junction.
We present a study of the pulsed current switching characteristics of spin-valve nanopillars with in-plane magnetized dilute permalloy and undiluted permalloy free layers in the ballistic regime at low temperature. The dilute permalloy free layer device switches much faster: the characteristic switching time for a permalloy free (Ni0.83Fe0.17) layer device is 1.18 ns, while that for a dilute permalloy ([Ni0.83Fe0.17]0.6Cu0.4) free layer device is 0.475 ns. A ballistic macrospin model can capture the data trends with a reduced spin torque asymmetry parameter, reduced spin polarization and increased Gilbert damping for the dilute permalloy free layer relative to the permalloy devices. Our study demonstrates that reducing the magnetization of the free layer increases the switching speed while greatly reducing the switching energy and shows a promising route toward even lower power magnetic memory devices compatible with superconducting electronics.
79 - Chao Luo , Zhen Li , TengTeng Lu 2018
Cryogenic CMOS technology (cryo-CMOS) offers a scalable solution for quantum device interface fabrication. Several previous works have studied the characterization of CMOS technology at cryogenic temperatures for various process nodes. However, CMOS characteristics for various width/length (W/L) ratios and under different bias conditions still require further research. In addition, no previous works have produced an integrated modeling process for cryo-CMOS technology. In this paper, the results of characterization of Semiconductor Manufacturing International Corporation (SMIC) 0.18 {mu}m CMOS technology at cryogenic temperatures (varying from 300 K to 4.2 K) are presented. Measurements of thin- and thick-oxide NMOS and PMOS devices with different W/L ratios are taken under four distinct bias conditions and at different temperatures. The temperature-dependent parameters are revised and an advanced CMOS model is proposed based on BSIM3v3 at the liquid nitrogen temperature (LNT). The proposed model ensures precision at the LNT and is valid for use in an industrial tape-out process. The proposed method presents a calibration approach for BSIM3v3 that is available at different temperature intervals.
Helium atoms in Rydberg states have been manipulated coherently with microwave radiation pulses near a gold surface and near a superconducting NbTiN surface at a temperature of $3 text{K}$. The experiments were carried out with a skimmed supersonic beam of metastable $(1text{s})^1(2text{s})^1, {}^1text{S}_0$ helium atoms excited with laser radiation to $ntext{p}$ Rydberg levels with principal quantum number $n$ between $30$ and $40$. The separation between the cold surface and the center of the collimated beam is adjustable down to $250 mutext{m}$. Short-lived $ntext{p}$ Rydberg levels were coherently transferred to the long-lived $ntext{s}$ state to avoid radiative decay of the Rydberg atoms between the photoexcitation region and the region above the cold surfaces. Further coherent manipulation of the $ntext{s}$ Rydberg levels with pulsed microwave radiation above the surfaces enabled measurements of stray electric fields and allowed us to study the decoherence of the atomic ensemble. Adsorption of residual gas onto the surfaces and the resulting slow build-up of stray fields was minimized by controlling the temperature of the surface and monitoring the partial pressures of H$_2$O, N$_2$, O$_2$ and CO$_2$ in the experimental chamber during the cool-down. Compensation of the stray electric fields to levels below $100 text{mV}/text{cm}$ was achieved over a region of $6 text{mm}$ along the beam-propagation direction which, for the $1770 text{m}/text{s}$ beam velocity, implies the possibility to preserve the coherence of the atomic sample for several microseconds above the cold surfaces.
In this work, magnetization dynamics is studied at low temperatures in a hybrid system that consists of thin epitaxial magnetic film coupled with superconducting planar microwave waveguide. The resonance spectrum was observed in a wide magnetic field range, including low fields below the saturation magnetization and both polarities. Analysis of the spectrum via a developed fitting routine allowed to derive all magnetic parameters of the film at cryogenic temperatures, to detect waveguide-induced uniaxial magnetic anisotropies of the first and the second order, and to uncover a minor misalignment of magnetic field. A substantial influence of the superconducting critical state on resonance spectrum is observed and discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا