Temperature plays an important role in spin torque switching of magnetic tunnel junctions causing magnetization fluctuations that decrease the switching voltage but also introduce switching errors. Here we present a systematic study of the temperature dependence of the spin torque switching probability of state-of-the-art perpendicular magnetic tunnel junction nanopillars (40 to 60 nm in diameter) from room temperature down to 4 K, sampling up to a million switching events. The junction temperature at the switching voltage---obtained from the thermally assisted spin torque switching model---saturates at temperatures below about 75 K, showing that junction heating is significant below this temperature and that spin torque switching remains highly stochastic down to 4 K. A model of heat flow in a nanopillar junction shows this effect is associated with the reduced thermal conductivity and heat capacity of the metals in the junction.
Understanding the magnetization dynamics induced by spin transfer torques in perpendicularly magnetized magnetic tunnel junction nanopillars and its dependence on material parameters is critical to optimizing device performance. Here we present a micromagnetic study of spin-torque switching in a disk-shaped element as a function of the free layers exchange constant and disk diameter. The switching is shown to generally occur by 1) growth of the magnetization precession amplitude in the element center; 2) an instability in which the reversing region moves to the disk edge, forming a magnetic domain wall; and 3) the motion of the domain wall across the element. For large diameters and small exchange, step 1 leads to a droplet with a fully reversed core that experiences a drift instability (step 2). While in the opposite case (small diameters and large exchange), the central region of the disk is not fully reversed before step 2 occurs. The origin of the micromagnetic structure is shown to be the disks non-uniform demagnetization field. Faster, more coherence and energy efficient switching occur with larger exchange and smaller disk diameters, showing routes to increase device performance.
We simulate the spin torque-induced reversal of the magnetization in thin disks with perpendicular anisotropy at zero temperature. Disks typically smaller than 20 nm in diameter exhibit coherent reversal. A domain wall is involved in larger disks. We derive the critical diameter of this transition. Using a proper definition of the critical voltage, a macrospin model can account perfectly for the reversal dynamics when the reversal is coherent. The same critical voltage appears to match with the micromagnetics switching voltage regardless of the switching path.
Modulation of a spin-torque oscillator (STO) signal based on a magnetic tunnel junction (MTJ) with perpendicularly magnetized free layer is investigated. Magnetic field inductive loop was created during MTJ fabrication process, which enables microwave field application during STO operation. The frequency modulation by the microwave magnetic field of up to 3 GHz is explored, showing a potential for application in high-data-rate communication technologies. Moreover, an inductive loop is used for self-synchronization of the STO signal, which after field-locking exhibits significant improvement of the linewidth and oscillation power.
Current-induced spin-transfer torques (STT) and spin-orbit torques (SOT) enable the electrical switching of magnetic tunnel junctions (MTJs) in nonvolatile magnetic random access memories. In order to develop faster memory devices, an improvement of the timescales underlying the current driven magnetization dynamics is required. Here we report all-electrical time-resolved measurements of magnetization reversal driven by SOT in a three-terminal MTJ device. Single-shot measurements of the MTJ resistance during current injection reveal that SOT switching involves a stochastic two-step process consisting of a domain nucleation time and propagation time, which have different genesis, timescales, and statistical distributions compared to STT switching. We further show that the combination of SOT, STT, and voltage control of magnetic anisotropy (VCMA) leads to reproducible sub-ns switching with a spread of the cumulative switching time smaller than 0.2 ns. Our measurements unravel the combined impact of SOT, STT, and VCMA in determining the switching speed and efficiency of MTJ devices.
The thermal spin-transfer torque (TSTT) is an effect to switch the magnetic free layer in a magnetic tunnel junction by a temperature gradient only. We present ab initio calculations of the TSTT. In particular, we discuss the influence of magnetic layer composition by considering $text{Fe}_text{x}text{Co}_{text{1-x}}$ alloys. Further, we compare the TSTT to the bias voltage driven STT and discuss the requirements for a possible thermal switching. For example, only for very thin barriers of 3 monolayers MgO a thermal switching is imaginable. However, even for such a thin barrier the TSTT is still too small for switching at the moment and further optimization is needed. In particular, the TSTT strongly depends on the composition of the ferromagentic layer. In our current study it turns out that at the chosen thickness of the ferromagnetic layer pure Fe gives the highest thermal spin-transfer torque.
Laura Rehm
,Georg Wolf
,Bartek Kardasz
.
(2020)
.
"Thermal effects in spin torque switching of perpendicular magnetic tunnel junctions at cryogenic temperatures"
.
Laura Rehm
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا