We present a study of the pulsed current switching characteristics of spin-valve nanopillars with in-plane magnetized dilute permalloy and undiluted permalloy free layers in the ballistic regime at low temperature. The dilute permalloy free layer device switches much faster: the characteristic switching time for a permalloy free (Ni0.83Fe0.17) layer device is 1.18 ns, while that for a dilute permalloy ([Ni0.83Fe0.17]0.6Cu0.4) free layer device is 0.475 ns. A ballistic macrospin model can capture the data trends with a reduced spin torque asymmetry parameter, reduced spin polarization and increased Gilbert damping for the dilute permalloy free layer relative to the permalloy devices. Our study demonstrates that reducing the magnetization of the free layer increases the switching speed while greatly reducing the switching energy and shows a promising route toward even lower power magnetic memory devices compatible with superconducting electronics.
Reducing energy dissipation while increasing speed in computation and memory is a long-standing challenge for spintronics research. In the last 20 years, femtosecond lasers have emerged as a tool to control the magnetization in specific magnetic materials at the picosecond timescale. However, the use of ultrafast optics in integrated circuits and memories would require a major paradigm shift. An ultrafast electrical control of the magnetization is far preferable for integrated systems. Here we demonstrate reliable and deterministic control of the out-of-plane magnetization of a 1 nm-thick Co layer with single 6 ps-wide electrical pulses that induce spin-orbit torques on the magnetization. We can monitor the ultrafast magnetization dynamics due to the spin-orbit torques on sub-picosecond timescales, thus far accessible only by numerical simulations. Due to the short duration of our pulses, we enter a counter-intuitive regime of switching where heat dissipation assists the reversal. Moreover, we estimate a low energy cost to switch the magnetization, projecting to below 1fJ for a (20 nm)^3 cell. These experiments prove that spintronic phenomena can be exploited on picosecond time-scales for full magnetic control and should launch a new regime of ultrafast spin torque studies and applications.
Temperature plays an important role in spin torque switching of magnetic tunnel junctions causing magnetization fluctuations that decrease the switching voltage but also introduce switching errors. Here we present a systematic study of the temperature dependence of the spin torque switching probability of state-of-the-art perpendicular magnetic tunnel junction nanopillars (40 to 60 nm in diameter) from room temperature down to 4 K, sampling up to a million switching events. The junction temperature at the switching voltage---obtained from the thermally assisted spin torque switching model---saturates at temperatures below about 75 K, showing that junction heating is significant below this temperature and that spin torque switching remains highly stochastic down to 4 K. A model of heat flow in a nanopillar junction shows this effect is associated with the reduced thermal conductivity and heat capacity of the metals in the junction.
We study spin transport through a suspended Cu channel by an electrical non-local 4-terminal measurement for future spin mechanics applications. A magnetoresistance due to spin transport through the suspended Cu channel is observed, and its magnitude is comparable to that of a conventional fixed Cu lateral spin valve. The spin diffusion length in the suspended Cu channel is estimated to be 340 nm at room temperature from the spin signal dependence on the distance between the ferromagnetic injector and detector electrodes. This value is found to be slightly shorter than in a fixed Cu. The decrease in the spin diffusion length in the suspended Cu channel is attributed to an increase in spin scattering originating from naturally oxidized Cu at the bottom of the Cu channel.
We characterize the nanosecond pulse switching performance of the three-terminal magnetic tunnel junctions (MTJs), driven by the spin Hall effect (SHE) in the channel, at a cryogenic temperature of 3 K. The SHE-MTJ devices exhibit reasonable magnetic switching and reliable current switching by as short pulses as 1 ns of $<10^{12}$ A/m$^{2}$ magnitude, exceeding the expectation from conventional macrospin model. The pulse switching bit error rates reach below $10^{-6}$ for < 10 ns pulses. Similar performance is achieved with exponentially decaying pulses expected to be delivered to the SHE-MTJ device by a nanocryotron device in parallel configuration of a realistic memory cell structure. These results suggest the viability of the SHE-MTJ structure as a cryogenic memory element for exascale superconducting computing systems.
Josephson junctions containing two ferromagnetic layers are being considered for use in cryogenic memory. Our group recently demonstrated that the ground-state phase difference across such a junction with carefully chosen layer thicknesses could be controllably toggled between zero and $pi$ by switching the relative magnetization directions of the two layers between the antiparallel and parallel configurations. However, several technological issues must be addressed before those junctions can be used in a large-scale memory. Many of these issues can be more easily studied in single junctions, rather than in the Superconducting QUantum Interference Device (SQUID) used for the phase-sensitive measurements. In this work, we report a comprehensive study of spin-valve junctions containing a Ni layer with a fixed thickness of 2.0 nm, and a NiFe layer of thickness varying between 1.1 and 1.8 nm in steps of 0.1 nm. We extract the field shift of the Fraunhofer patterns and the critical currents of the junctions in the parallel and antiparallel magnetic states, as well as the switching fields of both magnetic layers. We also report a partial study of similar junctions containing a slightly thinner Ni layer of 1.6 nm and the same range of NiFe thicknesses. These results represent the first step toward mapping out a ``phase diagram for phase-controllable spin-valve Josephson junctions as a function of the two magnetic layer thicknesses.
Laura Rehm
,Volker Sluka
,Graham E. Rowlands
.
(2019)
.
"Sub-nanosecond switching in a cryogenic spin-torque spin-valve memory element with a dilute permalloy free layer"
.
Laura Rehm
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا