Do you want to publish a course? Click here

Consistency of M-Theory on nonorientable manifolds

89   0   0.0 ( 0 )
 Added by Daniel S. Freed
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prove that there is no parity anomaly in M-theory in the low-energy field theory approximation. Our approach is computational. We determine generators for the 12-dimensional bordism group of pin manifolds with a w_1-twisted integer lift of w_4; these are the manifolds on which Wick-rotated M-theory exists. The anomaly cancellation comes down to computing a specific eta-invariant and cubic form on these manifolds. Of interest beyond this specific problem are our expositions of: computational techniques for eta-invariants, the algebraic theory of cubic forms, Adams spectral sequence techniques, and anomalies for spinor fields and Rarita-Schwinger fields.



rate research

Read More

151 - Hisham Sati , Urs Schreiber 2021
In the quest for mathematical foundations of M-theory, the Hypothesis H that fluxes are quantized in Cohomotopy theory, implies, on flat but possibly singular spacetimes, that M-brane charges locally organize into equivariant homotopy groups of spheres. Here we show how this leads to a correspondence between phenomena conjectured in M-theory and fundamental mathematical concepts/results in stable homotopy, generalized cohomology and Cobordism theory Mf: Stems of homotopy groups correspond to charges of probe p-branes near black b-branes; stabilization within a stem is the boundary-bulk transition; the Adams d-invariant measures G4-flux; trivialization of the d-invariant corresponds to H3-flux; refined Toda brackets measure H3-flux; the refined Adams e-invariant sees the H3-charge lattice; vanishing Adams e-invariant implies consistent global C3-fields; Conner-Floyds e-invariant is H3-flux seen in the Green-Schwarz mechanism; the Hopf invariant is the M2-brane Page charge (G7-flux); the Pontrjagin-Thom theorem associates the polarized brane worldvolumes sourcing all these charges. Cobordism in the third stable stem witnesses spontaneous KK-compactification on K3-surfaces; the order of the third stable stem implies 24 NS5/D7-branes in M/F-theory on K3. Quaternionic orientations correspond to unit H3-fluxes near M2-branes; complex orientations lift these unit H3-fluxes to heterotic M-theory with heterotic line bundles. In fact, we find quaternionic/complex Ravenel-orientations bounded in dimension; and we find the bound to be 10, as befits spacetime dimension 10+1.
In the quest for the mathematical formulation of M-theory, we consider three major open problems: a first-principles construction of the single (abelian) M5-brane Lagrangian density, the origin of the gauge field in heterotic M-theory, and the supersymmetric enhancement of exceptional M-geometry. By combining techniques from homotopy theory and from supergeometry to what we call super-exceptional geometry within super-homotopy theory, we present an elegant joint solution to all three problems. This leads to a unified description of the Nambu-Goto, Perry-Schwarz, and topological Yang-Mills Lagrangians in the topologically nontrivial setting. After explaining how charge quantization of the C-field in Cohomotopy reveals DAuria-Fres hidden supergroup of 11d supergravity as the super-exceptional target space, in the sense of Bandos, for M5-brane sigma-models, we prove, in exceptional generalization of the doubly-supersymmetric super-embedding formalism, that a Perry-Schwarz-type Lagrangian for single (abelian) M5-branes emerges as the super-exceptional trivialization of the M5-brane cocycle along the super-exceptional embedding of the half M5-brane locus, super-exceptionally compactified on the Horava-Witten circle fiber. From inspection of the resulting 5d super Yang-Mills Lagrangian we find that the extra fermion field appearing in super-exceptional M-geometry, whose physical interpretation had remained open, is the M-theoretic avatar of the gaugino field.
We build a connection between topology of smooth 4-manifolds and the theory of topological modular forms by considering topologically twisted compactification of 6d (1,0) theories on 4-manifolds with flavor symmetry backgrounds. The effective 2d theory has (0,1) supersymmetry and, possibly, a residual flavor symmetry. The equivariant topological Witten genus of this 2d theory then produces a new invariant of the 4-manifold equipped with a principle bundle, valued in the ring of equivariant weakly holomorphic (topological) modular forms. We describe basic properties of this map and present a few simple examples. As a byproduct, we obtain some new results on t Hooft anomalies of 6d (1,0) theories and a better understanding of the relation between 2d (0,1) theories and TMF spectra.
We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds S by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat connections, reduces the complete partition function of the non-Abelian theory on M to a 2-dimensional Abelian theory on the orbifold S which is easily evaluated.
M-theory compactified on $G_2$-holonomy manifolds results in 4d $mathcal{N}=1$ supersymmetric gauge theories coupled to gravity. In this paper we focus on the gauge sector of such compactifications by studying the Higgs bundle obtained from a partially twisted 7d super Yang-Mills theory on a supersymmetric three-cycle $M_3$. We derive the BPS equations and find the massless spectrum for both abelian and non-abelian gauge groups in 4d. The mathematical tool that allows us to determine the spectrum is Morse theory, and more generally Morse-Bott theory. The latter generalization allows us to make contact with twisted connected sum (TCS) $G_2$-manifolds, which form the largest class of examples of compact $G_2$-manifolds. M-theory on TCS $G_2$-manifolds is known to result in a non-chiral 4d spectrum. We determine the Higgs bundle for this class of $G_2$-manifolds and provide a prescription for how to engineer singular transitions to models that have chiral matter in 4d.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا