Do you want to publish a course? Click here

Chern-Simons Theory on Seifert 3-Manifolds

156   0   0.0 ( 0 )
 Added by Matthias Blau
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds S by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat connections, reduces the complete partition function of the non-Abelian theory on M to a 2-dimensional Abelian theory on the orbifold S which is easily evaluated.



rate research

Read More

We consider Chern-Simons theory with complex gauge group and present a complete non-perturbative evaluation of the path integral (the partition function and certain expectation values of Wilson loops) on Seifert fibred 3-Manifolds. We use the method of Abelianisation. In certain cases the path integral can be seen to factorize neatly into holomorphic and anti-holomorphic parts. We obtain closed formulae of this factorization for the expectation values of torus knots.
We study resurgence properties of partition function of SU(2) Chern-Simons theory (WRT invariant) on closed three-manifolds. We check explicitly that in various examples Borel transforms of asymptotic expansions posses expected analytic properties. In examples that we study we observe that contribution of irreducible flat connections to the path integral can be recovered from asymptotic expansions around abelian flat connections. We also discuss connection to Floer instanton moduli spaces, disk instantons in 2d sigma models, and length spectra of complex geodesics on the A-polynomial curve.
The maximal extension of supersymmetric Chern-Simons theory coupled to fundamental matter has $mathcal{N} = 3$ supersymmetry. In this short note, we provide the explicit form of the action for the mass-deformed $mathcal{N} = 3$ supersymmetric $U(N)$ Chern-Simons-Matter theory. The theory admits a unique triplet mass deformation term consistent with supersymmetry. We explicitly construct the mass-deformed $mathcal{N} = 3$ theory in $mathcal{N} = 1$ superspace using a fundamental and an anti-fundamental superfield.
We consider the $U(1)$ Chern-Simons gauge theory defined in a general closed oriented 3-manifold $M$; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The nonperturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent $U(1)$ principal bundles over $M$; the different sectors of the configuration space are labelled by the elements of the first homology group of $M$ and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the extent of the nonperturbative contributions to the mean values. The functional integration is achieved in any 3-manifold $M$, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin-Turaev surgery invariants.
270 - O.F. Dayi 2003
Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is derived. For spatial noncommutativity it is studied up to second order in the noncommutativity parameter theta. A new noncommutative Chern-Simons action is defined in terms of ordinary fields, inspired by the dual action. Moreover, a transformation between noncommuting and ordinary fields is proposed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا