Do you want to publish a course? Click here

4-manifolds and topological modular forms

148   0   0.0 ( 0 )
 Added by Pavel Putrov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We build a connection between topology of smooth 4-manifolds and the theory of topological modular forms by considering topologically twisted compactification of 6d (1,0) theories on 4-manifolds with flavor symmetry backgrounds. The effective 2d theory has (0,1) supersymmetry and, possibly, a residual flavor symmetry. The equivariant topological Witten genus of this 2d theory then produces a new invariant of the 4-manifold equipped with a principle bundle, valued in the ring of equivariant weakly holomorphic (topological) modular forms. We describe basic properties of this map and present a few simple examples. As a byproduct, we obtain some new results on t Hooft anomalies of 6d (1,0) theories and a better understanding of the relation between 2d (0,1) theories and TMF spectra.



rate research

Read More

We reformulate the question of the absence of global anomalies of heterotic string theory mathematically in terms of a certain natural transformation $mathrm{TMF}^bulletto (I_{mathbb{Z}}Omega^text{string})^{bullet-20}$, from topological modular forms to the Anderson dual of string bordism groups, using the Segal-Stolz-Teichner conjecture. We will show that this natural transformation vanishes, implying that heterotic global anomalies are always absent. The fact that $mathrm{TMF}^{21}(mathrm{pt})=0$ plays an important role in the process. Along the way, we also discuss how the twists of $mathrm{TMF}$ can be described under the Segal-Stolz-Teichner conjecture, by using the result of Freed and Hopkins concerning anomalies of quantum field theories. The paper contains separate introductions for mathematicians and for string theorists, in the hope of making the content more accessible to a larger audience. The sections are also demarcated cleanly into mathematically rigorous parts and those which are not.
By enforcing invariance under S-duality in type IIB string theory compactified on a Calabi-Yau threefold, we derive modular properties of the generating function of BPS degeneracies of D4-D2-D0 black holes in type IIA string theory compactified on the same space. Mathematically, these BPS degeneracies are the generalized Donaldson-Thomas invariants counting coherent sheaves with support on a divisor $cal D$, at the large volume attractor point. For $cal D$ irreducible, this function is closely related to the elliptic genus of the superconformal field theory obtained by wrapping M5-brane on $cal D$ and is therefore known to be modular. Instead, when $cal D$ is the sum of $n$ irreducible divisors ${cal D}_i$, we show that the generating function acquires a modular anomaly. We characterize this anomaly for arbitrary $n$ by providing an explicit expression for a non-holomorphic modular completion in terms of generalized error functions. As a result, the generating function turns out to be a (mixed) mock modular form of depth $n-1$.
We prove that there is no parity anomaly in M-theory in the low-energy field theory approximation. Our approach is computational. We determine generators for the 12-dimensional bordism group of pin manifolds with a w_1-twisted integer lift of w_4; these are the manifolds on which Wick-rotated M-theory exists. The anomaly cancellation comes down to computing a specific eta-invariant and cubic form on these manifolds. Of interest beyond this specific problem are our expositions of: computational techniques for eta-invariants, the algebraic theory of cubic forms, Adams spectral sequence techniques, and anomalies for spinor fields and Rarita-Schwinger fields.
219 - Yuji Tachikawa 2021
Spacetime theories obtained from perturbative string theory constructions are automatically free of perturbative anomalies, but it is not settled whether they are always free of global anomalies. Here we discuss a possible $mathbb{Z}_{24}$-valued pure gravitational anomaly of heterotic compactifications down to two spacetime dimensions, and point out that it can be shown to vanish using the theory of topological modular forms, assuming the validity of the Stolz-Teichner conjecture.
We study modular transformation of holomorphic Yukawa couplings in magnetized D-brane models. It is found that their products are modular forms, which are non-trivial representations of finite modular subgroups, e.g. $S_3$, $S_4$, $Delta(96)$ and $Delta(384)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا