Do you want to publish a course? Click here

M/F-Theory as Mf-Theory

152   0   0.0 ( 0 )
 Added by Urs Schreiber
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the quest for mathematical foundations of M-theory, the Hypothesis H that fluxes are quantized in Cohomotopy theory, implies, on flat but possibly singular spacetimes, that M-brane charges locally organize into equivariant homotopy groups of spheres. Here we show how this leads to a correspondence between phenomena conjectured in M-theory and fundamental mathematical concepts/results in stable homotopy, generalized cohomology and Cobordism theory Mf: Stems of homotopy groups correspond to charges of probe p-branes near black b-branes; stabilization within a stem is the boundary-bulk transition; the Adams d-invariant measures G4-flux; trivialization of the d-invariant corresponds to H3-flux; refined Toda brackets measure H3-flux; the refined Adams e-invariant sees the H3-charge lattice; vanishing Adams e-invariant implies consistent global C3-fields; Conner-Floyds e-invariant is H3-flux seen in the Green-Schwarz mechanism; the Hopf invariant is the M2-brane Page charge (G7-flux); the Pontrjagin-Thom theorem associates the polarized brane worldvolumes sourcing all these charges. Cobordism in the third stable stem witnesses spontaneous KK-compactification on K3-surfaces; the order of the third stable stem implies 24 NS5/D7-branes in M/F-theory on K3. Quaternionic orientations correspond to unit H3-fluxes near M2-branes; complex orientations lift these unit H3-fluxes to heterotic M-theory with heterotic line bundles. In fact, we find quaternionic/complex Ravenel-orientations bounded in dimension; and we find the bound to be 10, as befits spacetime dimension 10+1.

rate research

Read More

We prove that there is no parity anomaly in M-theory in the low-energy field theory approximation. Our approach is computational. We determine generators for the 12-dimensional bordism group of pin manifolds with a w_1-twisted integer lift of w_4; these are the manifolds on which Wick-rotated M-theory exists. The anomaly cancellation comes down to computing a specific eta-invariant and cubic form on these manifolds. Of interest beyond this specific problem are our expositions of: computational techniques for eta-invariants, the algebraic theory of cubic forms, Adams spectral sequence techniques, and anomalies for spinor fields and Rarita-Schwinger fields.
In the quest for the mathematical formulation of M-theory, we consider three major open problems: a first-principles construction of the single (abelian) M5-brane Lagrangian density, the origin of the gauge field in heterotic M-theory, and the supersymmetric enhancement of exceptional M-geometry. By combining techniques from homotopy theory and from supergeometry to what we call super-exceptional geometry within super-homotopy theory, we present an elegant joint solution to all three problems. This leads to a unified description of the Nambu-Goto, Perry-Schwarz, and topological Yang-Mills Lagrangians in the topologically nontrivial setting. After explaining how charge quantization of the C-field in Cohomotopy reveals DAuria-Fres hidden supergroup of 11d supergravity as the super-exceptional target space, in the sense of Bandos, for M5-brane sigma-models, we prove, in exceptional generalization of the doubly-supersymmetric super-embedding formalism, that a Perry-Schwarz-type Lagrangian for single (abelian) M5-branes emerges as the super-exceptional trivialization of the M5-brane cocycle along the super-exceptional embedding of the half M5-brane locus, super-exceptionally compactified on the Horava-Witten circle fiber. From inspection of the resulting 5d super Yang-Mills Lagrangian we find that the extra fermion field appearing in super-exceptional M-geometry, whose physical interpretation had remained open, is the M-theoretic avatar of the gaugino field.
We give an octonionic formulation of the N = 1 supersymmetry algebra in D = 11, including all brane charges. We write this in terms of a novel outer product, which takes a pair of elements of the division algebra A and returns a real linear operator on A. More generally, with this product comes the power to rewrite any linear operation on R^n (n = 1,2,4,8) in terms of multiplication in the n-dimensional division algebra A. Finally, we consider the reinterpretation of the D = 11 supersymmetry algebra as an octonionic algebra in D = 4 and the truncation to division subalgebras.
We review our recent work on ellipsoidal M2-brane solutions in the large-N limit of the BMN matrix model. These bosonic finite-energy membranes live inside SO(3)xSO(6) symmetric plane-wave spacetimes and correspond to local extrema of the energy functional. They are static in SO(3) and stationary in SO(6). Chaos appears at the level of radial stability analysis through the explicitly derived spectrum of eigenvalues. The angular perturbation analysis is suggestive of the presence of weak turbulence instabilities that propagate from low to high orders in perturbation theory.
It has recently been shown that F-theory based constructions provide a potentially promising avenue for engineering GUT models which descend to the MSSM. In this note we show that in the presence of background fluxes, these models automatically achieve hierarchical Yukawa matrices in the quark and lepton sectors. At leading order, the existence of a U(1) symmetry which is related to phase rotations of the internal holomorphic coordinates at the brane intersection point leads to rank one Yukawa matrices. Subleading corrections to the internal wave functions from variations in the background fluxes generate small violations of this U(1), leading to hierarchical Yukawa structures reminiscent of the Froggatt-Nielsen mechanism. The expansion parameter for this perturbation is in terms of alpha_(GUT)^(1/2). Moreover, we naturally obtain a hierarchical CKM matrix with V_(12) ~ V_(21) ~ epsilon, V_(23) ~ V_(32) ~ epsilon^(2), V_(13) ~ V_(31) ~ epsilon^(3), where epsilon ~ alpha_(GUT)^(1/2), in excellent agreement with observation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا